
www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 1 29/7/2021

Recording variables and .print() output

with WawiLib

Contents
1. Introduction ..2

1.1. Objective of this document. ...2

1.2. Software and hardware requirements ...2

1.3. Required user experience ..2

2. The “WawiRecUSB” Demo sketch example ..3

2.1. Concept of “WawiBlinkRecUSB” ..3

2.2. Download and execute “WawiBlinkRecUSB” ..3

3. WawiLib data recording to disk file ..6

3.1. Introduction ..6

3.2. Data recorders ...6

3.3. Data recording trigger aspects ...9

3.4. Data recording detailed example ... 10

3.6.1. Recorded variables .. 10

3.6.2. Time based recording of a variable or a series of variables ... 11

3.6.3. Change based recording of a variable or a series of variables ... 15

3.5. Data recorder storage aspects ... 18

4. WawiLib .print() recording to disk file. ... 21

4.1. Introduction .. 21

4.2. Define an output recorder ... 21

5. Final notes .. 27

6. Further reading ... 27

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 2 29/7/2021

1. Introduction

1.1. Objective of this document.

The first objective of this document is to describe how to use WawiLib to record variables. Points of

interest are triggers to write data records to a disk and how to limit the sizes of the recorded

datafiles. WawiRecUsb.ino, a demo sketch supplied with the WawiSerialUsb library, will be used to

explain the concepts.

The second objective of this document is to describe how to use WawiLib to record .print() debug

output to a PC disk file. WawiRecOutput.ino, a demo sketch supplied with the WawiSerialUsb library,

will be used to explain the concepts.

1.2. Software and hardware requirements

The Arduino IDE (in this example 1.8.15) and WawiLib V2.0.x both need to be installed on your PC.

The demo runs with licensed and unlicensed versions of WawiLib. During the grace period of 2

months, you can test and use all functions without registration. After this period registration is

required in order to access all functions. At this time registration is free. In the future a small

contribution might be required to register in order to support the website.

You also need a program to open the recorded data files: Excel or OpenOffice to open .xlsx files, a

text editor to open .csv files and an XML viewer (I use XML Notepad from Microsoft) to open .xml

files.

In this demo, the USB programming port of the Arduino is used as the communication interface

between WawiLib and your Arduino shield. This demo can easily be converted to other types of

communication links. The WawiLib getting started demos for serial, Ethernet and Wi-Fi

communication can be used as a base for the conversion to another interface type. The only thing

you have to do is replace the initialization code as in the demo’s for WawiWifi and WawiEthernet.

The hardware you need is an Arduino board, a USB programming cable, 3 Dupont male-male

(breadboard) wires and a Windows PC (32 or 64 bit). In this demo, we will use the Arduino UNO

board but other boards can be used in a similar or even identical way.

The data recorder that is part of WawiLib is typically used to record all kinds of I/O signals. In this

demo, we will record mainly internal variables of the Arduino. This choice was made to keep things

simple and easy to understand. On www.sylvestersolutions.com, you will find application notes that

enable you to build other applications using specific hardware.

1.3. Required user experience

You should have completed the tutorial “Getting started with WawiLib USB” and “Debugging with

WawiLib USB”. There are no specific additional requirements.

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 3 29/7/2021

2. The “WawiRecUSB” Demo sketch example

2.1. Concept of “WawiBlinkRecUSB”

This application builds further on the sketch “WawiBlinkDebugUsb” from the demo “Debugging with

WawiLib”. WawiBlinkRecUsb is in fact WawiBlinkDebugUsb with its errors corrected.

The objective of the program is to blink 5 sec after a pulse on digital input 5, to blink 7 sec after a

pulse on input 6 and to blink 10 seconds after a pulse on input 7. If one of the IO’s remains high,

blinking continues.

The program prints diagnostic output to the WawiLib output window when the LED is blinking:

 Counting down:

 The value of blinkTimeActual;

 LED is ON.

 LED is OFF"

2.2. Download and execute “WawiBlinkRecUSB”

 Open the demo sketch using the menu “File\Examples\WawiSerialUsb\WawiBlinkRecUSB” in the

Arduino IDE.

 Connect inputs 5, 6 and 7 to the GND pins of your board.

 Compile and download WawiBlinkRecUSB to your Arduino board.

/*
* Project Name: WawiRecUsb
* File: WawiRecUsb.ino
*
* Detailed manual:
* www.SylvesterSolutions.com\documentation -> "Recording variables with WawiLib.pdf"
*
* Description: demo file library for WawiSerialUsb library.
* Data recorder demo.
* => Record values of variables to disk
* => Record .print() output to disk
* Use the USB programming port to make connection with the Arduino board.
* Variables can be checked & modified with the WawiLib-PC software.
*
* Author: John Gijs.
* Created March 2020
* More info: www.sylvestersolutions.com
* Technical support: support@sylvestersolutions.com
* Additional info: info@sylvestersolutions.com
*/

#include <WawiSerialUsb.h>

WawiSerialUsb WawiSrv;
#define LED 13 // blinking light
#define IN_5 5 // light start blinking switch 1
#define IN_6 6 // light start blinking switch 2
#define IN_7 7 // light start blinking switch 3

// variables for demo:
long int blinkTimeActual = 0; // counter blink active (milliseconds)
long int blinkTimeTarget[] = { 5000, 7000, 10000 }; // bug 1: should be { ..., ...,
10000};

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 4 29/7/2021

bool digInput5; // state of digital input 5
bool digInput6; // state of digital input 6
bool digInput7; // state of digital input 7
bool led; // state of led
int loopCounter;

// make variables of interest know to WawiLib:
void wawiVarDef()
{
 WawiSrv.wawiVar(digInput5);
 WawiSrv.wawiVar(digInput6);
 WawiSrv.wawiVar(digInput7);
 WawiSrv.wawiVar(led);
 WawiSrv.wawiVar(blinkTimeActual);
 WawiSrv.wawiVar(loopCounter);
 WawiSrv.wawiVarArray(blinkTimeTarget);
}

void setup()
{
 Serial.begin(115200);
 // initialize WawiLib library:
 WawiSrv.begin(wawiVarDef, Serial, "MyArduino");
 pinMode(LED, OUTPUT);
 pinMode(IN_5, INPUT);
 pinMode(IN_6, INPUT);
 pinMode(IN_7, INPUT);

 WawiSrv.wawiBreakDisable();
}

void loop()
{
 digInput5 = digitalRead(IN_5);
 digInput6 = digitalRead(IN_6);
 digInput7 = digitalRead(IN_7); // bug 2: should be digInput7 = ...

 if (digInput5)
 blinkTimeActual = blinkTimeTarget[0]; // bug 3: should be activeMsSetpoint[0]

 if (digInput6)
 blinkTimeActual = blinkTimeTarget[1];

 if (digInput7)
 blinkTimeActual = blinkTimeTarget[2];

 if (digInput5 || digInput6 || digInput7)
 {
 WawiSrv.wawiBreak(1, "breakpoint after write to activeMsCounter hit");
 }

 while (blinkTimeActual > 0) // bug 4: should be activeMsCounter > 0
 {
 WawiSrv.wawiBreak(2, "In while loop");

 WawiSrv.print("Counting down:");
 WawiSrv.println(blinkTimeActual);

 WawiSrv.println("LED is ON.");
 led = HIGH;
 digitalWrite(LED, led);

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 5 29/7/2021

 WawiSrv.delay(500);
 blinkTimeActual = blinkTimeActual - 500;

 WawiSrv.println("LED is OFF.");
 led = LOW;
 digitalWrite(LED, led);
 WawiSrv.delay(500);
 blinkTimeActual = blinkTimeActual - 500;
 }
 WawiSrv.loop();
 loopCounter++;
}

Fig. 2.1. WawiRec source code.

The demo sketch contains the variables delayOn and delayOff. They determine the blinking timing of

the LED. The variables activeMsCounter and activeMsSetpoint determine the time interval the LED

will remain blinking. DigInput5, digInput6 and digInput7 mirror the state of the 3 digital inputs 5, 6

and 7. The function wawiVarDef shares the addresses of the variables with WawiLib.

If you have studied the WawiDebugUSB demo, you will be familiar with the rest of the program:

WawiServ.begin(wawiVarDef,Serial,”MyArduino”) initializes the library for communication over the

USB port. wawiVarDef() is the function where addresses of the variables are shared. “MyArduino” is

used as name reference for the board.

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 6 29/7/2021

3. WawiLib data recording to disk file

3.1. Introduction

One of the properties of the Arduino environment is that it requires a bit more than basic knowledge

to record data to your PC.

Programming data communication via serial, Ethernet, Wi-Fi and USB interfaces is not so easy within

Windows. For sure if you want to do this the right way (overlapped I/O, non-blocking, multithreaded,

automatic re-connect etc.).

Originally, WawiLib did not contain any data recording functions. As I wanted to create a PID

controller and record the signals, I decided to add recording functions to the program. Typical

applications where recording can be used are physics experiments at school or elsewhere.

Suppose you want to do some thermal experiments using a calorimeter. You can of course write

down on paper the temperature of the calorimeter in time. But automated data recording creates

additional value in this kind of experiment: increased accuracy, technical challenge and the notion of

“big data”. Not to forget that writing temperature values down on paper every 10 seconds is boring

and outdated.

Connecting a DS18B20 high resolution temperature sensor to an Arduino board is not so challenging.

But getting the measured data in an Excel table for further processing requires more specialized

knowledge. With the data recording functions integrated in WawiLib, everybody will be able to

create data recording files by configuring the right settings within WawiLib on the PC.

3.2. Data recorders

Fig. 3.1. Variables with multiple data recorders.

Data recording in WawiLib is implemented with a data recorder object. In the figure above, you see

11 variables. Data recorder REC1 will record the first 2 variables. Data recorder REC2 will record the

last 9 variables. Many data recorders can work next to each other, each of them with their own file

type and recording settings.

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 7 29/7/2021

Every time a data recorder does a recording, it takes the actual value of all its variables from the PC

memory and writes the values to a disk file or memory file in a single write job. Each recorder has its

own data file. At the beginning of the line, the timestamp indicating the current PC time is added

(details: see later).

The value of these variables in the PC will be more or less accurate depending on the speed used to

refresh them. Refreshing is done by reading the values from the Arduino memory. There is a general

refresh setting that can be overridden individually for each variable. To change general settings:

 In WawiLib, go to the menu “Settings/User preferences and license”.

Fig. 3.2. Modify the default refresh interval of variable Arduino WawiLib memory.

In the fig. 3.2., you see the default settings for the refresh interval of the variables read from the

Arduino. If you make this value too small, the communication link with your Arduino will be

overloaded. If you make it too large, there will be too much lag between the values recorded and the

real values of the variables.

 Enter the value of 250 ms for the default refresh interval.

 Press “ok”.

You can override the general timing for each individual variable (fig. 3.3):

 Click right on a variable and select “variable properties”.

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 8 29/7/2021

Fig. 3.3. Modify the individual refresh interval of variable Arduino WawiLib memory.

WawiLib can create 3 types of data recording files:

 xml: extensible Markup Language files

 xlsx: Microsoft Excel/Open Office compatible files

 csv: comma separated value files

Another topic is what to do with the recorded data when WawiLib is set offline and then

reconnected by the user. Some users require that the existing data file is overwritten, others expect

the new data to be appended to the data file and yet another might require a new file to be started.

Fig. 3.4. Data recorder settings with various options for file types, and file approach (append

overwrite…).

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 9 29/7/2021

All 3 options are available within WawiLib. If you choose to create a new file, the date and the time

the file was created will be added to the data file name to distinguish one file from another. The

name can be in UTC or local time. UTC is not impacted by winter time – summer time changes but

local time depends on the area where you live.

3.3. Data recording trigger aspects

Different applications have different data trigger requirements. The calorimeter application from the

previous section for example could require data recording every 10 seconds (time-based recording).

Another type of application would be registration of movement detection with a PIR infrared sensor

module. The PIR output would be connected to an Arduino input. In this application, time-based

registration is not the right way to go. This type of application requires an additional (time stamped)

data record when the value of the output of the detector has changed. We are not interested in

recording the PIR signal unless the output of the sensor changes (on-change recording).

 In WawiLib, go to “Settings/Data Recording”.

 Select the tab “Record details”.

Fig. 3.5. Modify the recording interval of a data recorder (WawiLib memory Disk file).

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 10 29/7/2021

If you check “Record time based”, the data recorder will store all variable values each time the

recording time interval has expired. The recording interval is specified in the “Recording interval

(sec)” field. If you want to use on-change recording, you need to uncheck “Recording time based”.

While using on-change recording, the variables will still be polled in the Arduino memory according

to the communication timing settings. But the moment a variable change is detected in the PC, a

trigger is sent to the data recorder to write the value of all the variables associated with this data

recorder immediately to disk (or to memory for .xlsx files). Whether a variable change will trigger a

write of all variables associated with the recorder or not can be defined in the properties section of

each individual variable. You can access the properties of a variable by clicking right on the variable in

the grid of the main window.

Typically you can use an integer that increments on each event, whenever its value increases,

WawiLib sees this and writes all variables related to the current data recorder to dis.

The recorder does not wait for its recording time interval to elapse to trigger a write job. When the

internal recorder timer elapses, data are written again to disk (if enabled). This function is very handy

to store events when and if they happen.

The trigger to write data “on change” mentioned in the previous paragraph does not even have to be

part of the variables written to a disk. It can act as a trigger that is not part of the recorded data. This

function can also be configured in the properties section of the variable.

Each data record can be accompanied by a time stamp. The time stamp can contain the current date

and time in local time or UTC (universal time coordinated) or both time stamps. An approximate time

stamp in milliseconds and the number of seconds since the start of the data recording can also be

added.

3.4. Data recording detailed example

3.6.1. Recorded variables

 Fill in the WawiLib table as in fig. 3.6. and press ‘Setup()’.

Fig. 3.6. Variables linked to recorder 1.

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 11 29/7/2021

 Disable and enable output window settings as in fig 3.6.

 (Enable “Display data recording”. => What is written to disk during variable recording will be

shown in the output window.)

 (Enable “Display output window recording”. => What is written to disk during output recording

will be shown in the output window.)

 (Enable “Automatic scroll” => The window will scroll to the last message added.)

Fig. 3.6. Enable display data recording in the output window & automatic scroll.

3.6.2. Time based recording of a variable or a series of variables

 Go to “Settings/Data Recording…”

Fig. 3.7. Define REC1 as a data recorder time based.

 Fill in the table as indicated in fig. 3.7.

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 12 29/7/2021

 Press “Add” and “Ok”.

 Select tab 2.

 Select REC 1 in the list control.

 Change recording interval to 1.0 sec

 Press “Update”

Fig. 3.8. Change time base of REC1 from 10 sec to 1 sec.

 Press OK.

 Press ‘Setup ()’.

 Press “Offline”.

In the output window, you see at line 003 the first record written to the data file. This is the title of

the various columns (including the variable names). In the output window, you see what is written by

Rec 1: delayOn and delayOff are both 500. On line 014 in the output window, you see the footer that

is written when WawiLib goes offline.

 Start Excel or LibreOffice calc.

 Drag and drop the file (file name and location as indicated as indicated on line 014 above) in the

Excel grid:

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 13 29/7/2021

Fig. 3.9. Data recorded opened in Microsoft Excel.

Fig. 3.10. Data recorded opened in LibreOffice Calc.

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 14 29/7/2021

 If excel does not process the .csv file properly y can use the command Data/From Text/CSV

to import the .csv formatted data.

 Above you see the reslult of opening the file in LibreOffice Calc.

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 15 29/7/2021

3.6.3. Change based recording of a variable or a series of variables

 Go to “Settings/Data Recording…”.

 Press “Clear List”.

 Fill in the fields as indicated in fig. 3.11:

Fig. 3.11. Creating a new data recorder, XLSX file format and overwrite mode.

 Select the tab “Record details” (fig. 3.12.).

 Unselect (disable) “Recording time based”.

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 16 29/7/2021

Fig. 3.12. Creating a new data recorder, disable time interval based recording.

 Press “ADD”.

 Press “OK” (close the dialog box).

 In the main variable grid, change the name of the recorders to REC2 as indicated below.

 In the main variable grid, select line 7 with the variable “blinkTimeActual”. (fig. 3.13.)

 Right-click and open the menu “Variable properties”.

 Go to Tab “Recording” in the dialog box.

 Check “Recording enabled” and “Change of variable triggers data recorder”.

Fig. 3.13. Make blinkTimeActual a trigger for variable change recording.

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 17 29/7/2021

 Note: If you disable (fig 3.13.) Recording enabled, this variable will trigger recording of the

complete set of variables in REC1 but blinkActual will not be part of the recorded data.

 Enable “Trace data recording “ in the output window.

 Press “OK” and Press ‘Setup()’.

 On your Arduino board, connect Input 5 to 5V using the breadboard wire.

 Connect the input 5 6 and 7 to GND.

 Connect the input 5 to 5V.

 Connect the input 5 to GND.

 Look at the output window.

 Wait 10 seconds.

 Press “Offline”.

Fig. 3.13. On change recording example result.

On each alternation of blinkTimeActual, a new data set will be written to the data file. Each write

operation is also visible in the output window. Once blinkTimeActual no longer changes, the

recording stops.

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 18 29/7/2021

 Open the file (see line 002 of the output window) in Excel or LibreOffice calc:

Fig. 3.14. On change recording example result.

In the table above, you can see that the status changes of blinkTimeAcutal are the only ones to

trigger the addition of a new data record to the data recording file. Other variables are recorded at

the same moment. As digInput5 goes to 1, blinkTimeAcutal starts decreasing. Do note that digInput5

remains recorded as 1 because it is not updated as long as the CPU is executing the while() loop.

If we would enable “Recording time based” for recorder REC2, it would record data both time based

and change based. Typically, you could decide to record at a slow pace time based and use “on

change” to have updated data when a trigger comes indicating something interesting happened.

3.5. Data recorder storage aspects

One of the biggest challenges of data recording is how to manage your disk space. Imagine a weather

station application. It runs day in and day out, recording its data in a single file. This would be not so

handy because the file risks to become so large that it cannot be handled any more.

In the same sense there are limits to the amount of space a program can occupy on your hard disk.

You do not want to get into trouble with other programs because WawiLib recorded data are eating

up too much of your free disk space.

In order to tackle these 2 issues, every data recorder in WawiLib is able to delete its old data files if

the amount of disk space used by the data recorder is too large.

Old data files can only be deleted once they are closed. The disk cleanup is triggered each time the

data recorder closes a data file. So you need to restart with a new file regularly.

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 19 29/7/2021

Fig. 3.15. Data recorder that creates a new data file each 15 minutes, hour, or day.

In the data recorder settings on tab 3 (“Disk usage and file size limitation”) you can enable the

function to limit the amount of disk space used by the current data recorder. Files that have the

same name as indicated in the “Filename tab” will be deleted, the oldest one first. This option is only

valid for recorders that create new files every 15 minutes, every hour or every day.

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 20 29/7/2021

Fig. 3.16. Data recorder that creates a new data file each 15 minutes.

Above you see the check box “Close file after each write operation. This option makes sure your data

ends up on disk immediately. In case of the weather station application, recording data each 15

minutes is more than fast enough. If we close the file after each write, we are much less vulnerable

to failures of the grid feeding our computer and other anomalies.

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 21 29/7/2021

4. WawiLib .print() recording to disk file.

4.1. Introduction

One of the properties of the Arduino environment is that it requires a bit more than basic knowledge

to record data to your PC.

Programming data communication via serial, Ethernet, Wi-Fi and USB interfaces is not so easy within

Windows. For sure if you want to do this the right way (overlapped I/O, non-blocking, multithreaded,

automatic re-connect etc.).

In many applications one needs the ability to register output of a program during a prolonged period

of time. Typically this can be an application that contains a very difficult to find bug or this can be an

application where the user needs to register events that happen from time to time.

Originally, WawiLib did not contain any output recording functions. From time to time Sylvester

Solutions does provide consultancy services and in one case the user wanted to register continuously

the output of the sketch on a remote server via Wi-Fi. This is where the idea to create output

recorders very similar to the data recorder in the previous chapters originated.

4.2. Define an output recorder

 Go to “Settings/Data Recording…”.

 Press “Clear List”.

Fig 4.1. define an output recorder (file type)

 Fill in the fields as indicated in fig. 4.1

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 22 29/7/2021

Fig 4.2. select the data to be recorded with the output recorder.

 Go to tap 2

 Fill in the fields as in fig. 4.2.

 Press “Add”

 Press “OK”

 Press “Setup” in the main tool bar.

 Enable the output window Diagnostic message display as in Fig. 4.3.

 Fig 4.. Display settings of the output window.

 Connect digital input 5,6,7 to GND.

 Connect digital input 5 to 5V.

 Connect digital input 5 to GND.

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 23 29/7/2021

Fig 4.4. Output recording working with Display of messages in output window (facultative).

 Wait 10 seconds.

 Press “Offline”.

 Open the file with recorded output data (see bottom line in the output window fig 4.4)

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 24 29/7/2021

Fig 4.5. Output of .print() messages in the sketch recorded in a disk file.

Note: the data in the file was created with the statements in fig. 4.6. marked in yellow.

/*
* Project Name: WawiRecUsb
* File: WawiRecUsb.ino
*
* Detailed manual:
* www.SylvesterSolutions.com\documentation -> "Recording variables with WawiLib.pdf"
*
* Description: demo file library for WawiSerialUsb library.
* Data recorder demo.
* => Record values of variables to disk
* => Record .print() output to disk
* Use the USB programming port to make connection with the Arduino board.
* Variables can be checked & modified with the WawiLib-PC software.
*
* Author: John Gijs.
* Created March 2020
* More info: www.sylvestersolutions.com
* Technical support: support@sylvestersolutions.com
* Additional info: info@sylvestersolutions.com
*/

#include <WawiSerialUsb.h>

WawiSerialUsb WawiSrv;
#define LED 13 // blinking light
#define IN_5 5 // light start blinking switch 1

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 25 29/7/2021

#define IN_6 6 // light start blinking switch 2
#define IN_7 7 // light start blinking switch 3

// variables for demo:
long int blinkTimeActual = 0; // counter blink active (milliseconds)
long int blinkTimeTarget[] = { 5000, 7000, 10000 }; // bug 1: should be { ..., ...,
10000};

bool digInput5; // state of digital input 5
bool digInput6; // state of digital input 6
bool digInput7; // state of digital input 7
bool led; // state of led
int loopCounter;

// make variables of interest know to WawiLib:
void wawiVarDef()
{
 WawiSrv.wawiVar(digInput5);
 WawiSrv.wawiVar(digInput6);
 WawiSrv.wawiVar(digInput7);
 WawiSrv.wawiVar(led);
 WawiSrv.wawiVar(blinkTimeActual);
 WawiSrv.wawiVar(loopCounter);
 WawiSrv.wawiVarArray(blinkTimeTarget);
}

void setup()
{
 Serial.begin(115200);
 // initialize WawiLib library:
 WawiSrv.begin(wawiVarDef, Serial, "MyArduino");
 pinMode(LED, OUTPUT);
 pinMode(IN_5, INPUT);
 pinMode(IN_6, INPUT);
 pinMode(IN_7, INPUT);

 WawiSrv.wawiBreakDisable();
}

void loop()
{
 digInput5 = digitalRead(IN_5);
 digInput6 = digitalRead(IN_6);
 digInput7 = digitalRead(IN_7); // bug 2: should be digInput7 = ...

 if (digInput5)
 blinkTimeActual = blinkTimeTarget[0]; // bug 3: should be activeMsSetpoint[0]

 if (digInput6)
 blinkTimeActual = blinkTimeTarget[1];

 if (digInput7)
 blinkTimeActual = blinkTimeTarget[2];

 if (digInput5 || digInput6 || digInput7)
 {
 WawiSrv.wawiBreak(1, "breakpoint after write to activeMsCounter hit");
 }

 while (blinkTimeActual > 0) // bug 4: should be activeMsCounter > 0
 {

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 26 29/7/2021

 WawiSrv.wawiBreak(2, "In while loop");

 WawiSrv.print("Counting down:");
 WawiSrv.println(blinkTimeActual);

 WawiSrv.println("LED is ON.");
 led = HIGH;
 digitalWrite(LED, led);
 WawiSrv.delay(500);
 blinkTimeActual = blinkTimeActual - 500;

 WawiSrv.println("LED is OFF.");
 led = LOW;
 digitalWrite(LED, led);
 WawiSrv.delay(500);
 blinkTimeActual = blinkTimeActual - 500;
 }
 WawiSrv.loop();
 loopCounter++;
}

Fig 4.5. WawiRecUpb creating output to be recorded on a disk file.

www.sylvestersolutions.com Recording variables with WawiLib

WAWILIB 2.0.1 27 29/7/2021

5. Final notes
An important aspect is the use of PC memory for temporary storage of recorded data by the data

recorders.

If you choose .xlsx as a data format, all the recorded data is stored into PC memory until the

recording is ended. At that time a series of files is written to disk. An .xlsx file is in fact a zipped

combination of xml coded files. The files contain data and references in xml format. So, storage in

memory is an aspect that is linked to the concept of .xlsx files, there is no other way.

.csv files and .xml file recording works differently: data is written to the disk memory cache each time

an additional record of data is recorded. This means that at a failure of the power to the PC, you will

lose some records but a part of the .csv file could remain intact. For .xml files, data is written to the

disk cache as well but in case of abnormal termination, the final closing records of the .xml file will

not be added, so the file becomes corrupt. (You can try to recover a corrupted xml file using a text

editor)

In order to minimize the risk of data loss, you can decide to create a new file every 15 minutes to

make sure this data is saved to disk in case of power failure.

Another relevant aspect of data storage is the fact that recorders will start only if all of their tags can

be read. When a recorder starts, it waits until all its tags are read once before it starts to record. This

means that in case of an illegal/missing tag configuration, the recorder will continue to wait. You can

observe the status of the data recorders in the bottom line of WawiLib-PC:

REC_WAIT_FOR_TAG_READ_ONCE is the state of the recorder used to wait for successful read of all

tags.

The best way to check if a recorder is started properly is to activate data recorder tracing and to look

at the output window. If recorded data is appearing in the output window, it is working properly.

6. Further reading
This demo demonstrates how to record variables with WawiLib. Recording can be done time-based

or on-change. Data files can have .csv or .xlsx format. File sizes can be limited by automatically

restarting with a new file every 15 minutes, every hour or every day. Disk usage can be limited for

each datalogger. WawiLib can clean up its data files automatically to prevent disk space usage

overload.

This demo also shows how to record the output of your .print() statements used in a sketch. Also

there the output of the statements can be sent to files of different types and sizes.

I hope you enjoyed this demo. Visit us on www.sylvestersolutions.com for the other demos.

