
www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -1- 25/7/2021

Getting started with WawiLib using the

Arduino programming port
1. Introduction ..2

1.1. Objective of this document ..2

1.2. Software and hardware requirements ...2

1.3. Required user experience ..2

2. Install WawiLib Software ...3

3. Load the Arduino board with the demo sketch ..5

4. WawiLib user interface overview...6

5. WawiLib communication link setup ... 10

6. Read and write variables with WawiLib ... 14

6.1. Watch variables ... 14

6.2. Modify variables .. 14

7. Record variable to file (introduction) ... 16

8. Record .print() output to file (introduction) ... 20

9. Introduction to WawiLib breakpoints .. 25

10. Further reading ... 27

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -2- 25/7/2021

1. Introduction

1.1. Objective of this document

The objective of this demo is to describe step by step how to get WawiLib up and running with a very

small Arduino example program (sketch).

Many users know the Arduino “Blink” sketch. “Blink” is designed to blink an on-board LED as you can

find on many Arduino boards. In this document, you will learn how to create “WawiBlink” – the

WawiLib version of “Blink”.

“WawiBlink” blinks the same LED, but with variable time intervals. The time the LED is on and the

time it is off is defined by 2 variables: delayOn and delayOff. The number of blinks is stored in the

variable blinkCounter.

In this demo, you will learn how to monitor and modify delayOn, delayOff and blinkCounter while the

sketch is running on the Arduino board. The demo will also demonstrate how you can record the

value of blinkCounter in an .xml, .xlsx or .csv file that can later be opened in Microsoft Excel,

LibreOffice or a program you have written yourself.

You will also learn how to create diagnostics messages that will be displayed in the console output

window of the WawiLib-PC application. The example uses this function to report the state changes of

the onboard LED.

This demo also shows how to record the output of sketch .print() statements in a disk file on your PC

and the option to use breakpoints in your sketch.

1.2. Software and hardware requirements

The Arduino IDE (in this example 1.8.15) and WawiLib V2.0.x both need to be installed on your PC.

The demo runs with licensed and unlicensed versions of WawiLib. During the grace period of 2

months, you can test and use all functions without registration. After this period registration is

required in order to access all functions. At this time registration is free. In the future a small

contribution might be required to register in order to support the website.

WawiLib supports multiple interface types: serial, software serial, USB, USB-native, TCP/IP, UDP/IP

via cable or Wi-Fi. In this demo, the USB programming port of the Arduino board is used.

The hardware you need is an Arduino board, a USB programming cable and a Windows PC (32 or 64

bit). The requirements are the same as those to run “Blink”. In this demo, we will use the Arduino

UNO board but other boards can be used in a similar or even identical way.

For the demo, the only difference between the UNO and other boards is the IO location of the LED.

Samples for other boards are provided in the “Examples” section of the Arduino IDE after installing

WawiLib. You can modify the definition of the constant “LED” yourself in the sample sketches if there

is no sample for your board provided with WawiLib.

1.3. Required user experience

This demo assumes that you know how to edit, compile and download Arduino programs. You should

also have basic computer skills such as downloading and installing Windows programs.

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -3- 25/7/2021

2. Install WawiLib Software
This section describes the steps you have to follow in order to install the WawiLib program and the

WawiSerialUsb Arduino library. If both have been correctly installed on your PC, you can skip this

section.

 Download the WawiLib installer from www.sylvestersolutions.com.

 Install WawiLib using the downloaded WawiLib32.msi or WawiLib64.msi installer.

 Start WawiLib.

 WawiLib will unpack the zipped WawiLib Arduino libraries and put them in the library

directory of the Arduino IDE.

 Open the Arduino IDE.

 Check the presence of the installed libraries:

Fig. 2.1. Check the installation of the WawiLibSerialUsb library in the Arduino IDE.

The libraries WawiSerialUsb, WawiEthernet and WawiWifi can be found in: C:\Users\[your user

name]\Documents\Arduino\libraries.

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -4- 25/7/2021

Fig. 2.2. Unpacked Libraries after installing WawiLib.

Note: 1) if, by exception, automatic installation of the libraries fails, you can manually unzip the

WawiSererialUsb.zip, WawiEthernet.zip and WawiWifi.zip in the Documents\Arduino\Libraries

directory. The libraries can be found in the installation directory of WawiLib.exe itself.

Note: 2) Manual installation of libraries can be triggered in the WawiLib menu "Settings\Preferences

and license”. In tab “WawiLib Arduino libraries” press the button "Install\Update WawiLib Libraries

for Arduino".

Fig. 2.3. Manual install of Arduino libraries.

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -5- 25/7/2021

3. Load the Arduino board with the demo sketch
Many of the Arduino libraries come with examples. WawiLib is not an exception. In this demo, we

will use the sketch called WawiBlinkUsb.ino.

 Go to File\Examples\WawiSerialUsb\WawiBlinklUsb in the Arduino IDE.

 Open and compile WawiBlinkUsb and download the sketch to your Arduino board.

 Check if the program was properly downloaded by looking at the LED on the board. The LED

should blink 500ms on and 500ms off.

#include<WawiSerialUsb.h>
WawiSerialUsb WawiSrv;
#defineLED 13

// test variables for demo:
int delayOn = 500;

int delayOff = 500;
int blinkCounter = 0;

// make variables of interest known to WawiLib:
// thisfunction is used in WawiSrv.begin(....)
void wawiVarDef()

{
 WawiSrv.wawiVar(delayOn);
 WawiSrv.wawiVar(delayOff);

 WawiSrv.wawiVar(blinkCounter);
}

void setup()
{
 Serial.begin(115200);

 WawiSrv.begin(wawiVarDef, Serial, "My Arduino");
 pinMode(LED, OUTPUT);
}

void loop()
{
 blinkCounter++;

 WawiSrv.print("WawiSrv.Print() demo in loop() function, blinkcounter = ");
 WawiSrv.println(blinkCounter);

 WawiSrv.println("LED is ON.");
 digitalWrite(LED, HIGH);
 WawiSrv.delay(delayOn);

 WawiSrv.println("LED is OFF.");
 digitalWrite(LED, LOW);

 WawiSrv.delay(delayOff);
 WawiSrv.loop();

}

Fig. 3.1. Minimal Arduino example WawiBlinkSerial.ino

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -6- 25/7/2021

4. WawiLib user interface overview
 Start WawiLib on your PC:

Fig. 4.1. WawiLib startup screen

The main window is split into 3 parts. The upper part contains a grid and a tree control, the bottom

part contains a list box.

Once connected to the Arduino, the tree control shows all shared (static) variables in your sketch. In

the grid control you enter the variables of your interest, the interface to be used, some parameters

related to the variable itself and the data recorder(s) to be used. Drag & drop from the tree to the

grid are also possible.

Interface and recorders can be configured using the “Settings” menu.

 Right click on the grid in the top window for additional options:

Fig. 4.2. WawiLib grid options.

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -7- 25/7/2021

Most of the options do not require additional comment, but the sub option “Display format” allows

you to select various display formats for the variables in the grid.

The lower part is an output window used to report what WawiLib is doing. It is very handy if you have

trouble going online on your board or if you want to see if a variable change was written to your

Arduino board properly.

 Right click on the bottom window (output window) for additional options:

Fig. 4.3. WawiLib output window options.

In the figure above, you see the popup menu where you can enable and disable different tracing

settings.

 Display .print() messages: display the output of WawiSerialUsb.print() messages used in your

sketch for diagnostics and other purposes.

 Display diagnostics messages: display the output of general WawiLib diagnostics messages.

 Display communication protocol messages: display the communication messages as they are

exchanged between the PC and the Arduino board.

 Display data recording: display the data written to disk by the data recorders (log variables).

 Display output recording: display the data written to disk by the output recorders (log

.println() output.)

 Automatic scroll: If activated, WawiLib will automatically scroll to the latest message in the

output window every time a new message arrives.

The image above gives an incomplete overview of the various fields. Therefor I will use a more

extended case for the bottom status line. This is the output of the WawiDemoControllinoTcpCable

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -8- 25/7/2021

demo also included with WawiLib. The demo uses an Ethernet TCP interface on an Controllino

Arduino Mega 2560 compatible PLC with generic WS5100/5500 Ethernet connection.

Fig. 4.4. WawiLib overview in a Controllino TCP configuration.

At the bottom of the WawiLib window there is a status line indicating the statuses of the application.

The line is subdivided in different fields. I will describe the various fields using the example as

displayed:

 “Loop()”: the target status of the communication interfaces {“Offline”, “Setup”, “Loop” }

Setup()=Arduino is executing setup function, Loop()=Arduino is executing Loop() function.

Note: Variable exchange is only available in Loop() mode, .print() is available in Setup() and in

Loop() modes.

 “Autowrite on”: status Autowrite (See above; “ENTER” key triggers a variable write command

for the line in the grid with the selected cell.)

 “REC1 [RECO_WAIT_TRIG] cnt=2”: the status name of the recorder named REC1, its FSM

(finite state machine) status (=no tags selected for recording). The actual number of data

records written to disk or memory (memory for excel .XLM file format) is 2.

 “No output recorders”: WawiLib can record .print() output from the sketch into an output

file. In this case no recorders for this kind of data are defined.

 “TCP=MyControllino=192.168.1.190-192.168.1.88/49152 [ITF_LOOP]”: An interface of type

TCP is active. The library was initialized (WawiSrv.begin() function) with parameter value

“MyControllino” for the name of the board. The interface card on the PC has IP

192.168.1.168 and the Arduino board has IP 192.168.1.88. TCP port 49152 is used on the

Arduino/Controllino side. The actual status of the communication FSM (finite state machine)

is ITF_LOOP.

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -9- 25/7/2021

 “Msg.ok/.tot 708/708: There are 708 data telegrams exchanged OK between the Arduino on

a total of 708 telegrams.

WawiLib supports multiple interfaces of multiple boards and multiple data recorders at the same

time. Therefor the fields “TCP1[…]” and “REC1[…]” display the various recorders and various

interfaces one after the other in an alternating way.

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -10- 25/7/2021

5. WawiLib Serial-USB communication link setup
One of the biggest challenges going online on a board is finding the right port and the right settings.

With this purpose in mind, WawiLib has a wizard to scan serial/USB ports with various settings to

check for the presence of one (or multiple) Arduino board(s).

 Select the WawiLib menu Settings\Communication interfaces:

Fig. 5.1. Serial communication setup.

 Select the baud rates, board type(s) and serial port(s) that you want to check.

 Press the button “Add”:

Fig. 5.2. Serial communication setup: scanning/setting up the connection.

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -11- 25/7/2021

 You will see all combinations listed up in the “Scan list + scan status” table.

 Press the button “Start scan”.

WawiLib will try all setting combinations in the table one by one. When the scan is completed

successfully, one (or more) icon(s) in the scan list will turn green. You can follow the process in the

output window of WawiLib and in the “Scan list + scan status” window.

Fig. 5.3. Serial communication setup: indicating successful check.

In the table above, you see in the column “Arduino board ID” the parameter that was part of the

WawiLib.begin(…) statement in the Sketch (see Fig. 3.1.). Here you can keep track if you use multiple

Arduino boards.

 Click right in the list view and select “Remove Inactive”:

 WawiLib will remove all interfaces that have failed their scan test.

Fig. 5.4. Serial communication setup: remove failed interfaces.

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -12- 25/7/2021

 Press “OK” to close the “Scanning completed” dialog box.

 Press “OK” to close the “Automatic scan range settings” dialog box.

At this time, the connection parameters are identified.

 Activate “Display .Print() messages” and “Display communication protocol messages”

window. (Click right and use the output window menu.)

 Press “Setup()” in the main window toolbar.

Fig. 5.5. Serial communication setup: remove failed interfaces.

WawiLib will establish a connection to the Arduino board using the parameters as they were

identified in the section above (connections to multiple boards at the same time are supported).

Notes:

 If you are using different types and families of Arduino boards, they all use different types of

RTS/DTR handshake types. In order to resolve this, you can select different board families.

 Be careful (do not use) with 1200 baud as this can trigger a function on the Arduino Due that

starts a firmware reset.

 When you open a “Serial Monitor Window” in the Arduino IDE, this can trigger a reset on

some boards. A reset of your board can be triggered in the same way when you make a

connection between WawiLib and your Arduino board.

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -13- 25/7/2021

 If you do not know which port to use for your Arduino connection, you can select all of them

at the same time and press “add” and scan. The right combinations will light up in green after

scanning.

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -14- 25/7/2021

6. Read and write variables with WawiLib

6.1. Watch variables

Fig. 6.1. Add variables to the grid using drag & drop.

 Go online (press Setup()) on the top toolbar.

 Drag the variables blinkCounter and delayOn from the tree control to the grid.

 Alternative: enter the names of the variables of interest in the grid.

 Modify the display format as indicated in Fig. 6.1.

The “Interface/Arduino ID” column will be filled in automatically as there is only 1 board active.

You can also click right on the grid and select “Available interfaces”. Any active interfaces can be

selected using this menu. This option is used to exchange data with multiple boards at the same

time.

Do note the “Variable address and status” column: @delayOn=0x0102 means this variable is located

at address 0x0102 in the Arduino board and its size is 2 bytes. The statement x 1 indicates that this

variable is not an array. VAR_READING_OK is the status of the variable data exchange FSM.

Look at line 4: if a variable cannot be found in the Arduino board, the status of the FSM is

VAR_ERR_NOT_FOUND.

6.2. Modify variables

In the upper window, you see the actual value of the variables. In the bottom window, you see the

communication telegrams that are exchanged over USB with your Arduino board when it is online.

 In the output window, disable all output but enable “Display diagnostics messages”.

 Fill in 100 as new value for delayOff in the write column.

 Press “Write all”.

 You see the actual value of delayOn change to 100 (in the upper window). The time the LED

is on will change to 100ms.

 In the bottom window, you see the result of your write action, if there is a format error, it

will be displayed here.

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -15- 25/7/2021

Fig. 6.2. Change the value of the parameter delayOff.

In the bottom window you can find the following information:

o The target status of the communication interfaces is “Loop()”.

o “Autowrite” is on.

o No data recorders were defined.

o No output recorders were defined.

o ser1 corresponds to an Arduino named “My Arduino”.

o COM 18 is the (virtual) USB serial port used.

o Baud rate = 115200 bits/second.

o 8 data bits.

o N=No parity.

o 1=1 stop bit.

o AVR=AVR family type of board.

o The state of the communication interface Ser1 is ITF_LOOP.

o 1539 message exchanges between PC and Arduino have been executed successfully.

o 1539 message exchanges between PC and Arduino have been executed in total.

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -16- 25/7/2021

7. Record variable to file (introduction)
In this section, we will configure a data recorder to record the values of our parameters in an .xlsx file

that is compatible with Microsoft Excel.

 Open the menu “Settings/Data Recording” in the main window.

 Press “Clear list”.

 Select as data file format in the first tab: xlsx “Excel/LibreOffice compatible spreadsheet”.

 Select “Overwrite current data file”.

 Go to the second tab. (Fig.. 7.2.)

 Select 10 seconds as time base.

 Press “Add”:

Fig. 7.1. Define a new data recorder.

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -17- 25/7/2021

Fig. 7.2. Define a new data recorder time base = 10 sec.

This will create a data recorder in line with your actual settings.

 Press “OK” to close the dialog box.

 In the main grid, select all variables recorder fields (Fig. 7.3 in blue), click right and select

“Available data recorders/Rec1”:

Fig. 7.3. Link all the variables to a data recorder REC1.

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -18- 25/7/2021

 Disable the “Trace protocol” option in the output window.

 Enable “Automatic scroll” & “Display data recording”

 Disable all other options ad indicated in Fig. 7.4.:

Fig. 7.4. Enable display the recorded data in the output window.

 Press “Setup()”.

You will now see the different values of your variables as they are written to the .xlsx file in the

output window.

 Press “Offline”.

Fig. 7.5. After going offline, the output window displays the name of the file created.

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -19- 25/7/2021

 Open the recorded .xlsx file in Microsoft Excel or equivalent.

Fig. 7.6. Data file opened in Microsoft Excel.

Fig. 7.7. Data file opened in LibreOffice Calc.

You can see the date, the time, the relative timestamp, the type of record (on timer or on change

recording), the name of the variables and their value in the Excel table.

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -20- 25/7/2021

8. Record .print() output to file (introduction)
In this section, we will configure an output recorder to record the output of WawiSrv.print()

statements to a .txt file.

 Open the menu “Settings/Output Recording” in the main window.

 Press “Clear list”.

 Select as data file format in the first tab: “csv: comma separated values”.

 Select “Overwrite current data file”.

 Go to the second tab.

 Select Arduino WawiSrv.print() messages (see Fig.. 8.2.)

 Press “Add”:

Fig. 8.1. Define a new output recorder.

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -21- 25/7/2021

Fig. 8.2. Select subset of output recorder messages to be recorded.

 Press “OK” to close the dialog box.

 Enable “Display output window recording () and “Display .print() messages” .

Fig. 8.3. Enable Display print() messages & Display output window recording.

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -22- 25/7/2021

 Press “Setup()”.

You will now see the output of the print() statements in the output window. The output is

generated in your sketch by the lines indicated in yellow in Fig.. 24.

Do note (Fig.. 8.5.) that the output itself is displayed and what is written to file as well. (See Node

column.) The settings of the output window do not influence the recoding itself.

 The LED on your board should blink 500ms on and 500ms off.

#include<WawiSerialUsb.h>
WawiSerialUsb WawiSrv;

#defineLED 13

// test variables for demo:

int delayOn = 500;
int delayOff = 500;
int blinkCounter = 0;

// make variables of interest knownto WawiLib:

// thisfunction is used in WawiSrv.begin(....)
void wawiVarDef()
{

 WawiSrv.wawiVar(delayOn);
 WawiSrv.wawiVar(delayOff);
 WawiSrv.wawiVar(blinkCounter);

}
void setup()
{

 Serial.begin(115200);
 WawiSrv.begin(wawiVarDef, Serial, "My Arduino");
 pinMode(LED, OUTPUT);

}
void loop()
{

 blinkCounter++;
 WawiSrv.print("WawiSrv.Print() demo in loop() function, blinkcounter = ");
 WawiSrv.println(blinkCounter);

 WawiSrv.println("LED is ON.");

 digitalWrite(LED, HIGH);
 WawiSrv.delay(delayOn);

 WawiSrv.println("LED is OFF.");
 digitalWrite(LED, LOW);
 WawiSrv.delay(delayOff);

 WawiSrv.loop();

}

Fig. 8.4. Minimal Arduino example WawiBlinkSerial.ino

 Press “Offline”.

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -23- 25/7/2021

Fig. 8.5. Arduino output recording displayed in window.

 Open the file WawiOutputRecordd.csv from your "Documents" folder.

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -24- 25/7/2021

Fig. 8.6. Arduino output recording file opened in Excel.

If you like, you can write also to an XML database file and WawiLib also supports closing the file each

hour so your recordings remain limited in file size.

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -25- 25/7/2021

9. Introduction to WawiLib breakpoints
Sometimes you want your code to stop at a certain point. Advanced debuggers have these functions

standard. WawiLib is no substitute for these tools. However sometimes a simple breakpoint can

come in handy. Therefor WawiLib contains a basic breakpoint functionality.

 Open the example File\Examples\WawiSerialUsb\WawiSerialUsbBreakpoint.ino in the IDE.

 Compile and download the example.

 Connect WawiLib the board using “Settings\Communication interfaces” as in §5.

 Press “Setup()”.

#include <WawiSerialUsb.h>
WawiSerialUsb WawiSrv;

#define LED 13

// test variables for demo:

int delayOn = 500;
int delayOff = 500;
int blinkCounter = 0;

bool led;

// make variables of interest known to WawiLib:

// this function is used in WawiSrv.begin(....)
void wawiVarDef()
{

 WawiSrv.wawiVar(delayOn);
 WawiSrv.wawiVar(delayOff);

 WawiSrv.wawiVar(blinkCounter);
 WawiSrv.wawiVar(led);
}

void setup()
{

 Serial.begin(115200);
 WawiSrv.begin(wawiVarDef, Serial, "My Arduino");
 pinMode(LED, OUTPUT);

 WawiSrv.wawiBreakDisable();
}

void loop()
{
 blinkCounter++;

 WawiSrv.print("WawiSrv.Print() demo in loop() function, blinkcounter = ");
 WawiSrv.println(blinkCounter);
 WawiSrv.println("LED is ON.");

 led = HIGH;
 digitalWrite(LED, led);
 WawiSrv.delay(delayOn);

 if (blinkCounter % 5 == 0)
 WawiSrv.wawiBreak(1, "Break after led is on");

 WawiSrv.println("LED is OFF.");
 led = LOW;
 digitalWrite(LED, LOW);

 WawiSrv.delay(delayOff);
 if (blinkCounter % 10 == 0)
 WawiSrv.wawiBreak(2, "Break after led is off");

 WawiSrv.loop();

}

Fig. 9.1. WawiLib breakpoint support demo.

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -26- 25/7/2021

 Add the variables to the grid as indicated in Fig. 9.2.

Fig 9.2. Variables of WawiBlinkUsbBreakpoint added to grid.

 Press “brkpt” in the toolbar.

 The sketch will run further until blinkCounter is a multiple of 5 or 10 and then show a

message in the output window as indicated in figure 29.

 The output window contains the line and a message you defined yourselves in your code.

 if (blinkCounter % 5 == 0)

 WawiSrv.wawiBreak(1, "Break after led is on");

 The output window also contains the source file, the function and the source line where the

breakpoint was hit.

 Press “continue” in the toolbar.

 The sketch will run further another breakpoint is hit.

www.sylvestersolutions.com WawiLib programming port

WAWILIB V2.0.1 -27- 25/7/2021

Fig 9.3. WawiBlinkUsbBreakpoint hit a breakpoint again.

10. Further reading
This demo demonstrates the concept of WawiLib using the USB programming port of your Arduino

board. WawiLib has more extended functions that are presented in other demos. Functions of

interest to you can be the monitoring and modification of strings or the use of various representation

formats (HEX/INT/UINT/CHAR/STRING/FLOAT/DOUBLE).

Arrays of variables are also supported with WawiLib. Recording of variables can be executed “on

change”, “on timer” or both. Data recording can also be done with one file per hour or per day to

make the generated files more manageable.

In the same way WawiLib supports recording of the output of .print() statements to a file on the disk

of the PC. Files remain manageable as they can also be saved per hour or per day.

WawiLib also supports an elementary breakpoint facility that can be very handy debugging smaller

Arduino’s that have no on-board debug support or by absence of a special cable.

WawiLib supports links via Wi-Fi, cabled Ethernet, hardware serial, software serial and via USB to

serial converters.

Arrays of variables are also supported by WawiLib. Recording variables can be executed “on

change”, “on timer” or both. Data recording can also be done with one file per hour or per day to

make the generated files more manageable. WawiLib supports links via USB, Wi-Fi, cabled Ethernet,

RS232C, hardware serial, software serial and via USB to serial converters.

I hope you enjoyed this demo. Visit us on www.sylvestersolutions.com for more demos.

