
www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -1- 27/7/2021

Getting started with WawiLib over Wi-Fi

1. Introduction ..2

1.1. Objective of this document. ...2

1.2. Software and hardware requirements ...2

1.3. Required user experience ..2

2. Installing the WawiLib software ..3

3. Wi-Fi network setup ..5

3.1. Network layout ..5

3.2. Identify your network parameters. ..5

3.3. Identify a free IP address on your local network segment ..6

4. Load Arduino board with demo sketch ..8

5. WawiLib user interface overview... 12

6. WawiLib communication link setup ... 16

7. Read and write variables with WawiLib ... 19

7.1. Watch variables ... 19

7.2. Modify variables .. 19

8. Record variables with WawiLib (introduction) ... 21

9. Record .print() output to file (introduction) ... 27

10. WawiLib breakpoints (introduction) .. 34

11. Further reading ... 39

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -2- 27/7/2021

1. Introduction

1.1. Objective of this document.

The objective of this demo is to describe step by step how to get WawiLib up and running with a very

small Arduino example program (a sketch). In this demo Wi-Fi will be used as communication link.

Many users know the Arduino “Blink” sketch. “Blink” is designed to blink an on-board LED as you can

find on many Arduino boards. In this document you will learn how to create “WawiBlink” – the

WawiLib version of “Blink”.

“WawiBlink” blinks the same LED, but with variable time intervals. The time the LED is on and the

time it is off is defined by 2 variables: delayOn and delayOff. The number of blinks is stored in the

variable blinkCounter.

In this demo you will learn how to monitor and modify delayOn, delayOff and blinkCounter while the

sketch is running on the Arduino board. The demo will also demonstrate how you can record the

value of blinkCounter in an .xml, .xlsx or .csv file that can later be opened in Microsoft Excel,

LibreOffice or a program you have written yourself.

You will also learn how to create diagnostics messages that will be displayed in the console output

window of the WawiLib-PC application. The example uses this function to report the state changes of

the on-board LED.

This demo also shows how to record the output of the sketch .print() statements in a disk file on your

PC and the use of breakpoints in your sketch.

1.2. Software and hardware requirements

The Arduino IDE (in this example 1.8.15) and WawiLib V2.0.x both need to be installed on your PC.

The demo runs with licensed and unlicensed versions of WawiLib. During the grace period of 2

months, you can test and use all functions without registration. After this period registration is

required in order to access all functions. At this time registration is free. In the future a small

contribution might be required to register in order to support the website.

WawiLib supports multiple interface types: serial, software serial, USB, USB-native, TCP/IP, UDP/IP

via cable or Wi-Fi. In this demo Wi-Fi is used as interface between WawiLib and an Arduino board.

The protocol used is UDP/IP.

The hardware you need is an Arduino MKR1000, a USB programming cable and a Windows PC (32 or

64 bit). Examples that work with MKR1010, Arduino Wi-Fi shield and ESP8266 are also provided with

WawiWifi. You also need a router with Wi-Fi capabilities that is connected to your PC. (The

unfortunately obsolete Arduino Wi-Fi Shield is also supported by WawiLib.)

1.3. Required user experience

This demo assumes that you are able to edit, compile and download Arduino programs. You should

also have basic computer skills such as downloading and installing Windows programs. We will use

Wi-Fi to connect to the Arduino board, therefore some basic knowledge of Ethernet and Wi-Fi

networks is also required.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -3- 27/7/2021

2. Installing the WawiLib software
This section describes the steps you have to follow in order to install the WawiLib program and the

WawiWifi Arduino library. If both have been correctly installed on your PC, you can skip this section.

 Download the WawiLib installer from www.sylvestersolutions.com.

 Install WawiLib using the downloaded WawiLib32.msi or WawiLib64.msi installer.

 Start WawiLib.

 WawiLib will unpack the zipped WawiLib Arduino libraries and put them in the library

directory of the Arduino IDE.

 Open the Arduino IDE.

 Check the presence of the installed libraries:

Fig. 2.1. Check the installation WawiWifi library in the Arduino IDE.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -4- 27/7/2021

The libraries WawiSerialUsb, WawiEthernet and WawiWifi can be found in: C:\Users\[your user

name]\Documents\Arduino\libraries.

Fig. 2.2. Unpacked Libraries after installing WawiLib.

Note: 1) if, by exception, automatic installation of the libraries fails, you can manually unzip the

WawiSererialUsb.zip, WawiEthernet.zip and WawiWifi.zip in the Documents\Arduino\Libraries

directory. The libraries can be found in the installation directory of WawiLib.exe itself.

Note: 2) Manual installation of libraries can be triggered in the WawiLib menu "Settings\Preferences

and license”. In tab “WawiLib Arduino libraries” press the button "Install\Update WawiLib Libraries

for Arduino".

Fig. 2.3. Manual install of Arduino libraries.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -5- 27/7/2021

3. Wi-Fi network setup

3.1. Network layout

Fig. 3.1. Test network architecture overview.

In the drawing above you can see the demo test setup. The demo laptop is connected via Wi-Fi

to the local network. There is also a Wi-Fi connection between the router (or switch) of the local

network and the Arduino board.

 Make sure the Arduino board has power via USB or via a separate power supply.

3.2. Identify your network parameters.

 Open a command line window on your PC: press magnification glass and type “CMD”.

Fig. 3.2. Opening a console window.

 On the command prompt type “IPCONFIG”.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -6- 27/7/2021

Fig. 3.3. Console window with output of “ipconfig” to enumerate available network adapters.

In the window above, we see that my demo PC has 2 Ethernet adapters connected to 2 different

networks: On 192.168.1.1, there is a hardware Ethernet adapter linked to the network segment

192.168.1.X. (disconnected) On 192.168.0.205, there is an Adapter connected to the network

segment 192.168.0.X.

In this demo I will use 192.168.0.X. If your network has different properties, replace 192.168.0.

appropriately in the text below.

3.3. Identify a free IP address on your local network segment

In this section we will use the command “ping” to identify a free network address on our network

segment. First, we will ping the Ethernet adapter of the PC itself to see if ping works, then we will

ping to 192.168.0.88 to see if there is a network adapter present on the address 192.168.0.88. If

192.168.0.88 is not used (timeout with ping), we can then use 192.168.0.88 as free Ethernet address

for our Arduino network shield.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -7- 27/7/2021

 Open a command window (as with the ipconfig CMD in the previous section).

 Type “ping 192.168.0.1”.

As 192.168.0.1 the PC network adapter address we will see a positive result (response time < time

out).

 Type “ping 192.168.0.88”.

This command should time-out. If 192.168.0.88 does not time-out, replace .88 by other addresses

(2...255) to find a free address on your local network segment:

Fig. 3.4. console window with output of “Ping” indicating 192.168.0.88 is not used.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -8- 27/7/2021

4. Load Arduino board with demo sketch
Many of the Arduino libraries come with examples. WawiLib is not an exception. In this demo we will

use WawiBlinkMkr1000UdpWifi.ino as demo sketch. Similar demos for other boards are available in

the example sketches menu of the Arduino IDE.

 Open the example via the menu “File\Examples\WawiWifi\WawiBlinkMkr1000UdpWifi” in

the Arduino IDE.

The largest part of the code is used to initialize the Wi-Fi library. The WawiLib specific part is there to

create a WawiWifi object called WawiSrv:

// declare Arduino WiFi UDP communication object:
WiFiUDP server;

// WawiLib communications object:

WawiWifi WawiSrv;

Fig. 4.1. Declaring WiFi UDP and WawiLib objects to manage communication with WawiLib-PC.

The function wawiVarDef is called (only 1 time) to look up the address and size of a variable in

memory. You should not call “wawiVarDef” from your sketch. The call is done by WawiWifi in the

background. (The macro wawiVar and wawiVarArray do the translation.)

// make variables of interest known to WawiLib:
// this function is used in WawiSrv.begin(....)

void wawiVarDef()
{
 WawiSrv.wawiVar(delayOn);

 WawiSrv.wawiVar(delayOff);
 WawiSrv.wawiVar(blinkCounter);

}

Fig. 4.2. Making variables visible to WawiLib in your sketch.

The statement WawiSrv.begin(…) initializes WawiWifi. The parameters are: the name of the function

“wawiVarDef()”, the initialized WiFiUDP server object and a name of your choice.

 // start UDP/IP server:
 server.begin(port);

 // Setup WawiLib:
 Serial.println(F("E) Initializing WawiLib:"));
 WawiSrv.begin(wawiVarDef, server, "MyArduino");

 Serial.println(F("-> Done"));

 pinMode(LED, OUTPUT);

Fig. 4.3. Initialize of the WawiLib object calling begin().

On every pass of WawiSrv.loop(), a check is made to see if there are incoming WawiLib PC requests.

In the same way WawiSrv.delay() splits the waiting interval into small delay segments with checks for

incoming WawiLib requests after each segment. At each print statement, data is put on a buffer and

sent to the PC if the buffer is full. The buffer is also flushed during the .loop() command.

void loop()
{
 blinkCounter++;
 WawiSrv.print("WawiSrv.Print() demo in loop() function, blinkcounter = ");

 WawiSrv.println(blinkCounter);

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -9- 27/7/2021

 WawiSrv.println("LED is ON.");
 digitalWrite(LED, HIGH);
 WawiSrv.delay(delayOn);

 WawiSrv.println("LED is OFF.");
 digitalWrite(LED, LOW);

 WawiSrv.delay(delayOff);

 WawiSrv.loop();

}

Fig. 4.4. the main loop with .loop() commands and .delay() commands.

In order to make the demo work, you need to fill in several parameters determined by your local

network and Wi-Fi configuration:

 Fill in the free IP address identified in the previous section (192.168.0.88).

 Modify ssid[] to the name of your wireless network (replace the text “--SSID--” & delete //).

 Modify key[] to the key of your wireless network (replace the text “--SSID KEY--” & delete //).

 Modify ipArd[] to the free IP address determined in the section above.

 Modify gateway[] to the IP address of the gateway identified in the section above.

// Wi-Fi parameters:
// char ssid[] = "--SSID--"; // network SSID (name)

// char key[] = "--SSID KEY--"; // network key

// the media access control (ethernet hardware) address for the shield:
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x88 };

// the IP address of your Arduino shield:
byte ipArd[] = { 192, 168, 0, 88 };

// communication port Arduino side for WawiLib communication (can be changed)
unsigned int port = 49152;

// your router's gateway address:
byte gateway[] = { 192, 168, 0, 1 };

// your network subnet:
byte subnet[] = { 255, 255, 225, 0 };

// your dns

byte mydns[] = { 195, 130, 130, 5 }; // (not essential)

Fig. 4.5. parametrizing the WiFi connection and the fixed IP address.

 Compile WawiWifi and download the file to your Arduino board.

 Open a serial monitor window in the Arduino IDE and check the output.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -10- 27/7/2021

Fig. 4.6. Open the serial monitor window.

Below you see the output of the Arduino sketch when it starts up:

Fig. 4.7. Serial monitor output indicating an proper initialization of WawiLib in the Sketch.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -11- 27/7/2021

 Validation: Ping to 192.168.0.88. There should be a timed response and not a time-out

message.

Fig. 4.8. Check the existence of Ethernet node 192.168.0.88. on the network (= ok).

 Check if the program was properly downloaded by looking at the LED on the board. It should

blink 500ms on and 500ms off.

At this time we have an Arduino board that is properly connected to one of our network

segments and correctly parametrized to go online and monitor and modify its (static) variables.

In the next section we will go online, monitor and modify these variables. The LED on your

Arduino board at I/O 6 should blink 500ms on 500ms off.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -12- 27/7/2021

5. WawiLib user interface overview
 Start WawiLib on your PC:

Fig. 5.1. WawiLib startup screen

The main window is split into 3 parts. The upper part contains a grid and a tree control, the bottom

part contains a list box.

Once connected to the Arduino, the tree control shows all shared (static) variables in your sketch. In

the grid control you enter the variables of your interest, the interface to be used, some parameters

related to the variable itself and the data recorder(s) to be used. Drag & drop from the tree to the

grid are also possible.

Interface and recorders can be configured using the “Settings” menu.

 Right click on the grid in the top window for additional options:

Fig. 5.2. WawiLib grid options.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -13- 27/7/2021

Most of the options do not require additional comment, but the sub option “Display format” allows

you to select various display formats for the variables in the grid.

The lower part is an output window used to report what WawiLib is doing. It is very handy if you have

trouble going online on your board or if you want to see if a variable change was written to your

Arduino board properly.

 Right click on the bottom window (output window) for additional options:

Fig. 5.3. WawiLib output window options.

In the figure above, you see the popup menu where you can enable and disable different tracing

settings.

 Display .print() messages: display the output of WawiSrv.print() messages used in your sketch

for diagnostics and other purposes.

 Display diagnostics messages: display the output of general WawiLib diagnostics messages.

 Display communication protocol messages: display the communication messages as they are

exchanged between the PC and the Arduino board.

 Display data recording: display the data written to disk by the data recorders (log variables).

 Display output recording: display the data written to disk by the output recorders (log

.println() output).

 Automatic scroll: If activated, WawiLib will automatically scroll to the latest message in the

output window every time a new message arrives.

The image above gives an incomplete overview of the various fields. Therefor I will use a more

extended case for the bottom status line. This is the output of the WawiDemoControllinoTcpCable

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -14- 27/7/2021

demo also included with WawiLib. The demo uses an Ethernet TCP interface on an Controllino

Arduino Mega 2560 compatible PLC with generic WS5100/5500 Ethernet connection.

fig 5.4. WawiLib overview in a Controllino TCP configuration.

At the bottom of the WawiLib window there is a status line indicating the statuses of the application.

The line is subdivided in different fields. I will describe the various fields using the example as

displayed:

 “Loop()”: the target status of the communication interfaces {“Offline”, “Setup”, “Loop” }

Setup()=Arduino is executing setup function, Loop()=Arduino is executing Loop() function.

Note: Variable exchange is only available in Loop() mode, .print() is available in Setup() and in

Loop() modes.

 “Autowrite on”: status Autowrite (See above; “ENTER” key triggers a variable write command

for the line in the grid with the selected cell.)

 “REC1 [RECO_WAIT_TRIG] cnt=2”: the status name of the recorder named REC1, its FSM

(finite state machine) status (=no tags selected for recording). The actual number of data

records written to disk or memory (memory for excel .XLM file format) is 2.

 “No output recorders”: WawiLib can record .print() output from the sketch into an output

file. In this case no recorders for this kind of data are defined.

 “TCP=MyControllino=192.168.1.190-192.168.1.88/49152 [ITF_LOOP]”: An interface of type

TCP is active. The library was initialized (WawiSrv.begin() function) with parameter value

“MyControllino” for the name of the board. The interface card on the PC has IP

192.168.1.168 and the Arduino board has IP 192.168.1.88. TCP port 49152 is used on the

Arduino/Controllino side. The actual status of the communication FSM (finite state machine)

is ITF_LOOP.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -15- 27/7/2021

 “Msg.ok/.tot 708/708: There are 708 data telegrams exchanged OK between the Arduino on

a total of 708 telegrams.

WawiLib supports multiple interfaces of multiple boards and multiple data recorders at the same

time. Therefor the fields “TCP1[…]” and “REC1[…]” display the various recorders and various

interfaces one after the other in an alternating way.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -16- 27/7/2021

6. WawiLib communication link setup
One of the biggest challenges going online is to find the right port and the right settings. With this

purpose in mind, WawiLib has a wizard to scan Ethernet IP/UDP ports with various settings to check

for the presence of an Arduino board on the network.

 Open the automatic scan range settings dialog via “Settings\Communication interfaces”.

 Select the tab “Ethernet UDP or TCP/IP communication scan settings”.

Fig. 6.1. Ethernet communication interface setup: scanning/setting up the connection.

 Check the PC network cards (adapters) to be used to look for the Arduino board interface.

 Fill in the IP address and the IP port as indicated above (determined in the previous section).

 Check “UDP” as protocol.

 Press “Add”.

 Press “Start scan”.

 Wait for the scan to complete.

 WawiLib will scan the network to discover Arduino boards on the net using the selected

parameter(s). You can fill in multiple fields at one time, ‘Add’ will add all possible

combinations of the parameters to the list box.

 If a connection was successfully identified, it will be shown with a green label in the

‘interface’ interface, if not, the label will become red after scanning.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -17- 27/7/2021

Fig. 6.3. Ethernet communication setup indicating successful link check.

 Click right on the mouse to make a pop-up menu appear:

Fig. 6.4. Modify the status of a connection without or after scanning.

 Activate/Disable: makes this choice available in the main window (checked

automatically after successful interface scan check).

 Change alias: change the connection name (UDP1 in this case).

 Remove inactive: remove all combinations that were not scanned successfully.

If all goes as planned, you should see a green icon indicating that the link was successfully verified. If

the connection fails, you might want to re-try with your virus scanner disabled or with your Windows

Firewall disabled. Checking for a very short period of time without firewall protection to identify the

cause of the problem is relatively safe. Do not operate your PC without these safeties active for a

longer period.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -18- 27/7/2021

If the connection is OK but fails with the firewall activated, you need to change your firewall settings

in order to let the traffic for WawiLib trough while blocking off other rogue network traffic.

 Press OK.

At this point the connection parameters are identified. The link will be effectively established once

you press “Setup()” in the main window. WawiLib supports multiple boards and multiple connections

at the same time. Serial, Ethernet and Wi-Fi connections can be operated together.

There is an obsolete Arduino Wi-Fi shield designed for the Uno, Mega and Due. Some of you might

still have this type of shield. This shield has the bizarre property to send back a UDP answer message

from a different port then the port where the message was received. You will see that many firewalls

have issues with this particular type of behavior. The MKR1000 and MKR1010 nor the USB Wi-Fi Rev2

have this issue.

If you would want to use TCP instead of UDP, this is possible but I advise strongly against this. The

performance of TCP on the Arduino shield is much slower compared to UDP. With UDP I get response

times < 30ms, with TCP <300ms. The risk of UDP loosing frames is handled by the WawiWifi protocol

itself at a higher level.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -19- 27/7/2021

7. Read and write variables with WawiLib

7.1. Watch variables

Fig. 7.1. Add variables to the grid using drag & drop.

 Go online (press Setup()) on the top toolbar.

 Drag the variables blinkCounter and delayOn from the tree control to the grid.

 Alternative: enter the names of the variables of interest in the grid.

 Modify the display format as indicated in fig. 7.1.

 The “Interface/Arduino ID” column will be filled in automatically as there is only 1 board

active.

(You can also click right and select “Available interfaces”. All configured links can be selected using

this menu. This option is necessary if you want to exchange data with multiple boards.)

7.2. Modify variables

 Fill in 100 as new value for delayOn in the write column.

 Press “Write all”.

 Click right mouse on the output window and enable display messages as below:

Fig. 7.3. The serial output window.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -20- 27/7/2021

You should see the actual value of delayOn change to 100. The time the LED is on will change to

100ms.

Fig. 7.4. Change the value of delayOn to 100 (hex).

Look at the status bar at bottom of the window:

o WawiLib has changed to Loop() mode as the Sketch is executing its Loop() function.

o “Autowrite” is on.

o UDP1 corresponds with an Arduino named “MyArduino” (see begin(“…”) in Sketch).

o 192.168.0.205 is the PC address.

o 192.168.0.88 is the Arduino address.

o UDP port 49152 is used at Arduino side.

o The status of the interface is “ITF_LOOP ()”.

o 192 message exchanges between PC and Arduino have been executed ok.

o 194 message exchanges PC and Arduino have been executed in total.

In the upper window, you will see the actual value of the variables. In the bottom window, you will

see the communication telegrams that are exchanged with your Arduino board (provided tracing is

enabled).

Look at the output window:

 On line 8664 you see feedback of your write operation.

 On the other lines you see the result of the WawiSrv.println(); statements in the sketch.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -21- 27/7/2021

8. Record variables with WawiLib (introduction)
In this section, we will configure a data recorder to record the values of our parameters in an .xlsx file

that is compatible with Microsoft Excel or LibreOffice calc.

 Select the menu “Settings/Data Recording”

 Select “Overwrite current data file”

 “xlsx: Excel/LibreOffice compatible spreadsheet” (and fill in the fields as indicated below)

 Press “Add”

Fig. 8.1. The data recorder (for variables) setup dialog, main tab.

 Select the tab “Record Details” (fig. 8.2)

 Click on the line “REC1” in the list box.

 Enter 1.5 for the “recording interval (sec)” parameter field.

 Press “Update”

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -22- 27/7/2021

Fig. 8.2. The data recorder setup dialog, timing = 1.5 sec.

This will create a data recorder in line with your actual settings.

 Press “OK”.

 Fill in the table as in fig. 8.3.

 Select all grid fields linked to variables in the recorder column.

 Click right

 “Available data recorders/Rec1”.

 Note: You can also enter “REC1” in the fields for the variables in the Recorder column.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -23- 27/7/2021

Fig. 8.3. Select a data recorder for all the variables.

Fig. 8.4. Select a data recorder for all the variables: result.

 Disable all the options in the output window (right click in output window):

 Enable “Display data recording” (fig. 8.5.)

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -24- 27/7/2021

Fig. 8.5. Enable recording reporting in the output window.

 Press “Setup()”

 Wait 15 seconds.

 You will now see the different values of the variables as they are written to the .xlsx file in

the output window.

 Press “Offline”

Fig. 8.6. The data recording mirrored in the output window.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -25- 27/7/2021

 Open the recorded .xlsx file in LibreOffice calc:

Fig. 8.7. File with recorded variables in .XLSX format opened in LibreOffice calc.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -26- 27/7/2021

 Open the recorded .xlsx file in Microsoft Excel:

Fig. 8.8. File with recorded variables in .XLSX format opened in Microsoft Excel..

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -27- 27/7/2021

9. Record .print() output to file (introduction)
In this section, we will configure an output recorder to record the output of WawiSrv.print()

statements to a .csv file.

 Open the menu “Settings/Output Recording” in the main window.

 Press “Clear list”.

 Select as data file format in the first tab: “csv: comma separated values”.

 Select “Overwrite current data file”.

 Go to the second tab.

 Eanble “Arduino WawiSrv.print() messages” recording (see fig. 9.2.)

 Press “Add”:

fig 9.1. Define a new output recorder.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -28- 27/7/2021

fig 9.2 Enable output “WawiSrv.print()” statements recording to disk file.

 Press “OK” to close the dialog box.

 Enable only “Display output window recording () and “Display .print() messages” .

fig 9.3. Enable “Output recording” and “Display print messages” to the WawiLib output window.

 Press “Setup()”.

 Wait 15 seconds

 Press “Offline”

 You will now see the output of the .print() statements in the output window at the same

time this info is also recorded to file.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -29- 27/7/2021

 The LED on your board should blink 500ms on and 500ms off.

There is no link between the activation of the “Display output window recording” in the output

window and the actual recording (=writing of the data to the file) on disk.

Fig 9.4. WawiLib output recording + tracing of output recording active.

/*
* Project Name: WawiBlinkMkr1000UdpWifi
* File: WawiBlinkMkr1000UdpWifi.ino

*
* Detailed manual:
* www.SylvesterSolutions.com\documentation -> "Getting started WawiLib WiFi.pdf"

*
* Description: demo file library for WawiWifi library.
* Lets you monitor and modify variables of different type and sizes.

* Uses WiFi to make connection with the Arduino board.
* Variables can be checked & modified with the WawiLib-PC software.
*

* Author: John Gijs.
* Created March 2020

* More info: www.sylvestersolutions.com
* Technical support: support@sylvestersolutions.com
* Additional info: info@sylvestersolutions.com

*/

#include <WawiWifi.h>

// WiFi parameters:
// char ssid[] = "--SSID--"; // network SSID (name)

// char key[] = "--SSID KEY--"; // network key

const char ssid[] = "telenet-F8665"; // my network SSID (name)

const char key[] = "vyzvveXbuh45"; // my network SSID (name of alternative
network)

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -30- 27/7/2021

// the media access control (ethernet hardware) address for the shield:
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x88 };

// the IP address of your Arduino shield:
byte ipArd[] = { 192, 168, 0, 88 };

// communication port Arduino side for WawiLib communication (can be changed)
unsigned int port = 49152;

// your router's gateway address:
byte gateway[] = { 192, 168, 0, 1 };

// your network subnet:
byte subnet[] = { 255, 255, 225, 0 };

// your dns
byte mydns[] = { 195, 130, 130, 5 }; // your dns (not essential)

#define LED 6

// declare communication object:
WiFiUDP server;

// WawiLib communications object:
WawiWifi WawiSrv;

// test variables for demo:
int delayOn = 500;
int delayOff = 500;

int blinkCounter = 0;
bool ledStatus;

// make variables of interest known to WawiLib:
// this function is used in WawiSrv.begin(....)
void wawiVarDef()

{
 WawiSrv.wawiVar(delayOn);
 WawiSrv.wawiVar(delayOff);

 WawiSrv.wawiVar(blinkCounter);
 WawiSrv.wawiVar(ledStatus);
}

void printWiFiStatus();

void setup()
{

 Serial.begin(115200);

 // wait for serial monitor window to connect & open or time-out:

 int holdTime = 10000;
 while (!Serial && holdTime > 0)
 {

 delay(10);
 holdTime -= 10;
 }

 Serial.println(F("\nA) Looking for WiFi interface:"));
 if (WiFi.status() == WL_NO_SHIELD)

 {
 Serial.println(F("-> WiFi not detected. Program stopped."));
 while (true);

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -31- 27/7/2021

 }

 else
 Serial.println("-> WiFi detected.");

 Serial.println(F("B) Set static IP. "));
 WiFi.config(ipArd, mydns, gateway, subnet);

 Serial.println("C) Connect to WiFi network: ");
 int status = WiFi.begin(ssid, key);
 do

 {
 Serial.println(F("-> Connecting ..."));
 status = WiFi.begin(ssid, key);

 int i = 0;
 do
 {

 delay(1000);
 status = WiFi.status();
 } while (i++ < 10 && status != WL_CONNECTED);

 } while (status != WL_CONNECTED);
 Serial.println(F("-> Completed OK."));

 Serial.println(F("D) Read settings: "));
 Serial.print("-> SSID: ");

 Serial.println(WiFi.SSID());
 Serial.print("-> IP: ");
 IPAddress ip = WiFi.localIP();

 Serial.println(ip);
 Serial.print("-> UDP port: ");
 Serial.println(port);

 // start UDP/IP server:
 server.begin(port);

 // Setup WawiLib:
 Serial.println(F("E) Initializing WawiLib:"));

 WawiSrv.begin(wawiVarDef, server, "MyArduino");
 Serial.println(F("-> Done"));
 pinMode(LED, OUTPUT);

}

void loop()

{
 blinkCounter++;

 WawiSrv.print("WawiSrv.Print() demo in loop() function, blinkcounter = ");
 WawiSrv.println(blinkCounter);

 WawiSrv.println("LED is ON.");
 ledStatus = HIGH;
 digitalWrite(LED, ledStatus);

 WawiSrv.delay(delayOn);

 WawiSrv.println("LED is OFF.");

 ledStatus = LOW;
 digitalWrite(LED, ledStatus);
 WawiSrv.delay(delayOff);

 WawiSrv.loop();

}

fig 9.4. Minimal Arduino example WawiBlinkMkr1000UdpWifi.ino

 Press “Offline”.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -32- 27/7/2021

fig 9.5. Arduino output recording displayed in window.

 Open the file WawiOutputRecordd.csv from your "Documents" folder.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -33- 27/7/2021

fig 9.6. Arduino output recording file opened in Excel.

If you like, you can write also to an XML database file and WawiLib also supports closing the file each

hour so your recordings remain limited in file size.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -34- 27/7/2021

10. WawiLib breakpoints (introduction)
Sometimes you want your code to stop at a certain point. Advanced debuggers have these functions

standard. WawiLib is no substitute for these tools. However sometimes a simple breakpoint can

come in handy. Therefor WawiLib contains a basic breakpoint functionality.

 Open the example File\Examples\WawiSerialUsb\WawiWifiBreakpoint.ino in the IDE.

 Compile and download the example.

 Connect WawiLib the board using “Settings\Communication interfaces” as in §5.

 Press “Setup()”.

/*
* Project Name: WawiBlinkMkr1000UdpWifiBreakpoint

* File: WawiBlinkMkr1000UdpWifi.ino
*
* Detailed manual:

* www.SylvesterSolutions.com\documentation -> "Getting started WawiLib WiFi.pdf"
*
* Description: demo file library for WawiWifi library.

* Lets you monitor and modify variables of different type and sizes.
* Uses WiFi to make connection with the Arduino board.
* Variables can be checked & modified with the WawiLib-PC software.

*
* This program will stop once it hit a breakpoint and can be resumed
* using WawiLib-PC.

*
* Author: John Gijs.

* Created March 2020
* More info: www.sylvestersolutions.com
* Technical support: support@sylvestersolutions.com

* Additional info: info@sylvestersolutions.com
*/

#include <WawiWifi.h>

// WiFi parameters:

// char ssid[] = "--SSID--"; // network SSID (name)
// char key[] = "--SSID KEY--"; // network key

// the media access control (ethernet hardware) address for the shield:
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x88 };

// the IP address of your Arduino shield:
byte ipArd[] = { 192, 168, 0, 88 };

// communication port Arduino side for WawiLib communication (can be changed)
unsigned int port = 49152;

// your router's gateway address:
byte gateway[] = { 192, 168, 0, 1 };

// your network subnet:
byte subnet[] = { 255, 255, 225, 0 };

// your dns
byte mydns[] = { 195, 130, 130, 5 }; // your dns (not essential)

#define LED 6

// declare communication object:

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -35- 27/7/2021

WiFiUDP server;

// WawiLib communications object:
WawiWifi WawiSrv;

// test variables for demo:
int delayOn = 500;

int delayOff = 500;
int blinkCounter = 0;
bool ledStatus;

// make variables of interest known to WawiLib:
// this function is used in WawiSrv.begin(....)

void wawiVarDef()
{
 WawiSrv.wawiVar(delayOn);

 WawiSrv.wawiVar(delayOff);
 WawiSrv.wawiVar(blinkCounter);
 WawiSrv.wawiVar(ledStatus);

}

void printWiFiStatus();

void setup()

{
 Serial.begin(115200);

 // wait for serial monitor window to connect & open or time-out:
 int holdTime = 10000;
 while (!Serial && holdTime > 0)

 {
 delay(10);
 holdTime -= 10;

 }

 Serial.println(F("\nA) Looking for WiFi interface:"));

 if (WiFi.status() == WL_NO_SHIELD)
 {
 Serial.println(F("-> WiFi not detected. Program stopped."));

 while (true);
 }
 else

 Serial.println("-> WiFi detected.");

 Serial.println(F("B) Set static IP. "));
 WiFi.config(ipArd, mydns, gateway, subnet);

 Serial.println("C) Connect to WiFi network: ");
 int status = WiFi.begin(ssid, key);
 do

 {
 Serial.println(F("-> Connecting ..."));
 status = WiFi.begin(ssid, key);

 int i = 0;
 do
 {

 delay(1000);
 status = WiFi.status();
 } while (i++ < 10 && status != WL_CONNECTED);

 } while (status != WL_CONNECTED);
 Serial.println(F("-> Completed OK."));

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -36- 27/7/2021

 Serial.println(F("D) Read settings: "));

 Serial.print("-> SSID: ");
 Serial.println(WiFi.SSID());
 Serial.print("-> IP: ");

 IPAddress ip = WiFi.localIP();
 Serial.println(ip);
 Serial.print("-> UDP port: ");

 Serial.println(port);

 // start UDP/IP server:

 server.begin(port);

 // Setup WawiLib:

 Serial.println(F("E) Initializing WawiLib:"));
 WawiSrv.begin(wawiVarDef, server, "MyArduino");
 Serial.println(F("-> Done"));

 pinMode(LED, OUTPUT);

 // Enable/disable breakpoints at startup:

 // (remove comment to activate)
 // WawiSrv.wawiBreakDisable();

 // WawiSrv.wawiBreakEnable();
}

void loop()
{
 blinkCounter++;

 WawiSrv.print("WawiSrv.Print() demo in loop() function, blinkcounter = ");
 WawiSrv.println(blinkCounter);
 WawiSrv.println("LED is ON.");

 ledStatus = HIGH;
 digitalWrite(LED, ledStatus);
 WawiSrv.delay(delayOn);

 if (blinkCounter % 5 == 0)
 WawiSrv.wawiBreak(1, "Break after led is on");
 WawiSrv.println("LED is OFF.");

 ledStatus = LOW;
 digitalWrite(LED, ledStatus);
 WawiSrv.delay(delayOff);

 if (blinkCounter % 10 == 0)
 WawiSrv.wawiBreak(2, "Break after led is off");

 WawiSrv.loop();

}

fig 10.1. WawiLib breakpoint support demo.

 Add the variables to the grid as indicated in fig. 10.2.

 Press “Setup()”.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -37- 27/7/2021

Fig 10.2. WawiBlinkUdpWifiBreakpoint hit a breakpoint.

 The sketch will run until a breakpoint is hit.

 Fig 10.2. shows that a breakpoint was hit:

o The status of the board is ITF_LOOP_BRK (see status bar)

o The blue arrow “Continue” on the toolbar is enabled.

 Press “Continue” in the toolbar.

 The sketch will run further until blinkCounter is a multiple of 5 or 10 and then show a

message in the output window as indicated in figure 29.

 The output window contains the line and a message you defined yourselves in your code.

 if (blinkCounter % 5 == 0)

 WawiSrv.wawiBreak(1, "Break after led is on");

Fig 10.3. WawiBlinkUdpWifiBreakpoint hit a breakpoint.

 The output window also contains the source file name, the function and the source line

where the breakpoint was hit. (fig. 10.2)

 Wait until another breakpoint is hit.

 Press the hollow circle “brkpt” in the toolbar to disable all breakpoints.

 The sketch will run further disregarding breakpoints.

 Note: You can define the initial activation state of the breakpoints using the following

statements:

 // WawiSrv.wawiBreakDisable(); // enable or disable breakpoints at startup

 // WawiSrv.wawiBreakEnable(); // enable or disable breakpoints at startup

Fig 10.4. WawiBlinkUdpWifiBreakpoint activation at startup.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -38- 27/7/2021

Fig 10.5. WawiBlinkUdpWifiBreakpoint with breakpoints deactivated.

www.sylvestersolutions.com WawiLib Wi-Fi

WAWILIB 2.0.1 -39- 27/7/2021

11. Further reading
This demo demonstrates the concept of WawiLib using Wi-Fi. WawiLib has more extended functions

that will be presented in other demos. Functions of interest to you can be the monitoring and

modification of strings or the use of various representation formats (HEX/INT/UINT/CHAR/

STRING/FLOAT/DOUBLE).

Arrays of variables are also supported with WawiLib. Recording of variables can be executed “on

change”, “on timer” or both. Data recording can also be done with one file per hour or per day to

make the generated files more manageable.

In the same way WawiLib supports recording of the output of .print() statements to a file on the disk

of the PC. Files remain manageable as they can also be saved per hour or per day.

WawiLib also supports an elementary breakpoint facility that can be very handy debugging smaller

Arduino’s that have no on-board debug support or by absence of a special cable.

WawiLib supports links via Wi-Fi, cabled Ethernet, hardware serial, software serial and via USB to

serial converters.

I hope you enjoyed this demo. Visit us on www.sylvestersolutions.com for more demos.

