
www.sylvestersolutions.com debug with WawiLib

WawiLib 2.0.1 -1- 28/07/2021

Debugging with WawiLib

1. Introduction ..2

1.1. Objective of this document. ...2

1.2. Software and hardware requirements ...2

1.3. Required user experience ..2

2. THE “WawiBlinkDebugUSB” Demo sketch example ...3

2.1. Concept of “WawiBlinkDebugUSB” ..3

2.2. Download and execute “WawiBlinkDebugUSB” ...3

3. Debug with WawiLib ...6

3.1. Visualize all sketch variables in WawiLib. ...6

3.2. Bug 1: Faulty initialization of blinkITemTarget. (Check initializations)7

3.3. Bug 2: Use of digiInput6. Instead of digiInput7. (The IO test.) ...8

3.4. Bug 3 blinkTimeTarget[1] should be blinktimeTarget[0]. .. 10

3.5. Bug 4: (blinkTimeActual < 0) should be blinkTimeActual > 0 ... 12

4. Further Reading .. 15

www.sylvestersolutions.com debug with WawiLib

WawiLib 2.0.1 -2- 28/07/2021

1. Introduction

1.1. Objective of this document.

The objective of this document is to describe how to use WawiLib to debug an Arduino application.

WawiBlinkDebugUsb.ino, a demo sketch supplied with the WawiSerialUsb library, will be used to

explain the concept.

The idea to make this demo came when I was making a demo for the WawiLib data recorder

functions. The data recorder demo did not work so I used WawiLib to debug the demo. I was very

surprised to see how fast I found the bugs with WawiLib.

In this document, I will describe what went wrong and how I used WawiLib to solve the problem. The

demo is not an artificial setup but a report of what actually happened.

1.2. Software and hardware requirements

The Arduino IDE (in this example 1.8.15) and WawiLib V2.0.x both need to be installed on your PC.

The demo runs with licensed and unlicensed versions of WawiLib. During the grace period of 2

months, you can test and use all functions without registration. After this period registration is

required in order to access all functions. At this time registration is free. In the future a small

contribution might be required to register in order to support the website.

The hardware you need is an Arduino board, a USB programming cable, 3 Dupont male-male

breadboard wires and a Windows PC (32 or 64 bit). In this demo, we will use the Arduino UNO but

other boards can be used in a similar or even identical way. For compatibility of boards, go to

www.sylvestersolutions.com.

If you want to use another Arduino board instead of the UNO for the demo, you might need to use

3V instead of 5V in order not to damage your board. For more details, look at the specification of

your board.

1.3. Required user experience

The concepts of this document build further on the tutorial “Getting started WawiLib USB”. You

should be familiar with the demo as I will not re-explain how to go online with the board over USB.

www.sylvestersolutions.com debug with WawiLib

WawiLib 2.0.1 -3- 28/07/2021

2. THE “WawiBlinkDebugUSB” Demo sketch example

2.1. Concept of “WawiBlinkDebugUSB”

This application builds further on “WawiBlink” from the demo “Getting Started with WawiLib USB”.

WawiBlinkDebugUSB uses 3 digital inputs. Whenever one of these inputs goes high, the onboard LED

will blink during a time interval and then go dark again. The objective of the sketch is to blink a LED

multiple times during a time period when one of 3 digital inputs is raised high.

 On digital input 5 high, the LED should blink during 3 seconds (500ms on, 500ms off).

 On digital input 6 high, the LED should blink during 7 seconds (500ms on, 500ms off).

 On digital input 7 high, the LED should blink during 10 seconds (500ms on, 500ms off).

In order to demonstrate how to debug with Wawilib, I added 4 bugs to the code. In this demo I will

demonstrate how they can be found in a simple way using WawiLib.

Note: WawiLib does not claim to be a state-of-the-art debugger like dedicated IDE’s that use special

hardware and dedicated CPU facilities. But, as will be demonstrated in this demo, using WawiLib

together with the Arduino IDE will make it much easier to find bugs compared to what you can do

with the bare Arduino-IDE.

2.2. Download and execute “WawiBlinkDebugUSB”

 Open the example via the menu “File\Examples\WawiSerialUsb\WawiBlinkDebugUsb” in the

Arduino IDE.

 Compile and download the example in your board.

Below you can see the program in detail. This program will not work properly because there is are 4

bugs in it. We will use WawiLib to find the error and then correct it. The bugs are indicated in

comment.

Compile and download WawiBlinkDebugUsb to your Arduino board:

/*
 Project Name: WawiBlinkDebugUsb
 File: WawiBlinkDebugUsb.ino

 Detailed manual:
 www.SylvesterSolutions.com\documentation -> "Debugging with WawiLib.pdf"

 Description: demo file library for WawiSerialUsb libary.
 Demo dedicated to demonstrate a debug concept with WawiLib.
 Lets you monitor and modify variables of different type and sizes.
 Use the programming USB port to make connection with the Arduino board.
 Variables can be checked & modified with the WawiLib-PC software.

 Author: John Gijs.
 Created December 2020
 Technical support: support@sylvestersolutions.com
 Additional info: info@sylvestersolutions.com
*/

#include <WawiSerialUsb.h>

WawiSerialUsb WawiSrv;
#define LED 13 // blinking light
#define IN_5 5 // light start blinking switch 1

www.sylvestersolutions.com debug with WawiLib

WawiLib 2.0.1 -4- 28/07/2021

#define IN_6 6 // light start blinking switch 2
#define IN_7 7 // light start blinking switch 3

// variables for demo:
long int blinkTimeActual = 0; // counter blink active (milliseconds)
long int blinkTimeTarget[] = { 3000, 7000, 1000 }; // bug 1: { ..., ..., 10000};

bool digInput5; // state of digital input 5
bool digInput6; // state of digital input 6
bool digInput7; // state of digital input 7
bool led; // state of led
int loopCounter;

// make variables of interest know to WawiLib:
void wawiVarDef()
{
 WawiSrv.wawiVar(digInput5);
 WawiSrv.wawiVar(digInput6);
 WawiSrv.wawiVar(digInput7);
 WawiSrv.wawiVar(led);
 WawiSrv.wawiVar(blinkTimeActual);
 WawiSrv.wawiVar(loopCounter);
 WawiSrv.wawiVarArray(blinkTimeTarget);
}

void setup()
{
 Serial.begin(115200);
 // initialize WawiLib library:
 WawiSrv.begin(wawiVarDef, Serial, "MyArduino");
 pinMode(LED, OUTPUT);
 pinMode(IN_5, INPUT);
 pinMode(IN_6, INPUT);
 pinMode(IN_7, INPUT);

 WawiSrv.wawiBreakDisable();
}

void loop()
{
 digInput5 = digitalRead(IN_5);
 digInput6 = digitalRead(IN_6);
 digInput6 = digitalRead(IN_7); // bug 2: should be digInput7 = ...

 if (digInput5)
 blinkTimeActual = blinkTimeTarget[1]; // bug 3: should blinktimeTarget[0]

 if (digInput6)
 blinkTimeActual = blinkTimeTarget[1];

 if (digInput7)
 blinkTimeActual = blinkTimeTarget[2];

 if (digInput5 || digInput6 || digInput7)
 {
 WawiSrv.wawiBreak(1, "breakpoint after write to activeMsCounter hit");
 }

 while (blinkTimeActual < 0) // bug 4: should be blinkTimeActual > 0
 {
 WawiSrv.wawiBreak(2, "In while loop");

www.sylvestersolutions.com debug with WawiLib

WawiLib 2.0.1 -5- 28/07/2021

 WawiSrv.print("Counting down:");
 WawiSrv.println(blinkTimeActual);

 WawiSrv.println("LED is ON.");
 led = HIGH;
 digitalWrite(LED, led);
 WawiSrv.delay(500);
 blinkTimeActual = blinkTimeActual - 500;

 WawiSrv.println("LED is OFF.");
 led = LOW;
 digitalWrite(LED, led);
 WawiSrv.delay(500);
 blinkTimeActual = blinkTimeActual - 500;
 }
 WawiSrv.loop();
 loopCounter++;
}

Fig. 2.1. WawiBlinkDebugUsb.ino including 4 bugs.

 Using 3 Dupont wires, connect all IO’s 5,6, & 7 to the GND of the UNO.

Fig. 2.2. Uno with IO’s 5, 6, 7 connected to GND.

www.sylvestersolutions.com debug with WawiLib

WawiLib 2.0.1 -6- 28/07/2021

3. Debug with WawiLib

3.1. Visualize all sketch variables in WawiLib.

 Start WawiLib on your PC.

 Go online (press Setup()) on the top toolbar.

Fig. 3.1. WawiLib online on an Uno with WawiBlinkDebugUsb.ino

 Drag the variables digiInput5, digiInput6 and digiInput7 to the grid.

 Drag the variable blinkTimeTarget[0..2] to the grid (or type in the name of the variable in the

table manually).

 Note: you can select all of them together and drag all variables at once to the grid.

www.sylvestersolutions.com debug with WawiLib

WawiLib 2.0.1 -7- 28/07/2021

3.2. Bug 1: Faulty initialization of blinkITemTarget. (Check initializations)

 Open the the blinkTimeTarget in the tree.

 Add blinkTimeTarget[2] to the grid table.

Fig. 3.2. Actual values of variable real time displayed by WawiLib.

 Look at the values of blinkTimeTarget [2]

 You see that they do not have the right value, 1000 instead of 10000.

 Look at the code in the Arduino IDE: the initialization value is faulty:

 long int blinkTimeTarget[] = { 3000, 7000, 1000 }; // bug 1: { ..., ..., 10000};

Fig. 3.3. Bug 1.

 Correct the bug in the code (replace 1000 by 10000).

 Fill in 10.000 for the new value of blinkTimeTarget[2] in the “Write value” column.

 Press “write all”.

Fig. 3.4. Actual values after correcting the value of blinkTimeTarget[2] to 10000.

www.sylvestersolutions.com debug with WawiLib

WawiLib 2.0.1 -8- 28/07/2021

3.3. Bug 2: Use of digiInput6. Instead of digiInput7. (The IO test.)

 Connect Digital io 5 to +5V on the Uno.

 Look at the table.

Fig. 3.5. Actual values after DI5 connected to 5V.

 digInput5 goes to 1 as it should, this is OK.

 Connect Digital input 5 to GND on the Uno.

 Connect Digital input 6 to 5V on the Uno.

 Look at the table

Fig. 3.6. Actual values after DI6 connected to 5V.

 digInput6 remains at 0, this is not OK, this is a bug. It seems that digInput6 is overwritten by the

statement digInput6 = digitalRead(IN_7);

 Correct the bug in the code (fig. 3.7.).

 digInput5 = digitalRead(IN_5);
 digInput6 = digitalRead(IN_6);
 digInput7 = digitalRead(IN_7); // bug 2: should be digInput7 = ...

Fig. 3.7. Bug 2.

 Press “Offline”

www.sylvestersolutions.com debug with WawiLib

WawiLib 2.0.1 -9- 28/07/2021

 Compile and download the corrected code.

 Press “Setup”.

Fig. 3.8. DI 6 at 5V makes digInput6 = 1 (OK).

 Connect Digital input 5 to GND.

 Connect Digital input 7 to 5V.

 Check the table:

Fig. 3.9. DI 7 at 5V makes digInput7 = 1 (OK).

www.sylvestersolutions.com debug with WawiLib

WawiLib 2.0.1 -10- 28/07/2021

3.4. Bug 3 blinkTimeTarget[1] should be blinktimeTarget[0].

 Add blinkTimeActual to the table.

 Connect Digital input 5 to GND.

 Connect Digital input 6 to GND.

 Connect Digital input 7 to 5V.

 Check the value of blinkTimeActual (should be 10.000)

Fig. 3.9. DI 7 at 5V makes blinkTimeActual 10.000 (OK).

 Check the value of blinkTimeActual is and should be 10.000 (= OK)

 Connect Digital input 5 to GND.

 Connect Digital input 6 to 5V.

 Connect Digital input 7 to GND.

 Check the value of blinkTimeActual (should be 7.000)

Fig. 3.10. DI 6 at 5V makes blinkTimeActual 7.000 (OK).

 Check the value of blinkTimeActual is and should be 7.000 (= OK)

www.sylvestersolutions.com debug with WawiLib

WawiLib 2.0.1 -11- 28/07/2021

 Connect Digital input 5 to 5V.

 Connect Digital input 6 to GND.

 Connect Digital input 7 to GND.

 Check the value of blinkTimeActual (should be 3.000)

Fig. 3.10. DI 6 at 5V makes blinkTimeActual 7.000 (OK).

 Check the value of blinkTimeActual is and should be 5.000 (= Not OK), bug identified.

 if (digInput5)
 blinkTimeActual = blinkTimeTarget[1]; // bug 3: should blinktimeTarget[0]

Fig. 3.11. DI 5 at 5V does not make blinkTimeActual 3.000 (Not OK).

 Press “Offline”

 Correct the code compile and download.

 Press “Setup()”.

 Check the result.

Fig. 3.12 DI 5 at 5V makes blinkTimeActual 3000 (OK).

www.sylvestersolutions.com debug with WawiLib

WawiLib 2.0.1 -12- 28/07/2021

3.5. Bug 4: (blinkTimeActual < 0) should be blinkTimeActual > 0

 Press “Setup()”.

Fig. 3.13. WawiBlinkDebugUsb sketch with previous bugs corrected.

 Connect Digital input 5 to +5V.

 Connect Digital input 6 to GND.

 Connect Digital input 7 to GND.

 Check the value of blinkTimeActual (should be decreasing)

 blinkTimeActual is not decreasing and should be. And LED is not blinking ?

 Activate the breakpoints by pressing on the button brkpt with the full red dot.

Fig. 3.14. Activate breakpoints

Fig. 3.15.Breakpoint hit at source code line 81.

www.sylvestersolutions.com debug with WawiLib

WawiLib 2.0.1 -13- 28/07/2021

 Look at the WawiLib status bar in fig 3.15. status of code execution is ITF_LOOP_BRK (breakpoint

hit)

 Look at line 81: so the execution of the code reaches this point of the source code.

 if (digInput5 || digInput6 || digInput7)
 {
81: WawiSrv.wawiBreak(1, "breakpoint after write to activeMsCounter hit");
 }

 while (blinkTimeActual < 0) // bug 4: should be blinkTimeActual > 0
 {
86: WawiSrv.wawiBreak(2, "In while loop");

Fig. 3.16. Source code with 2 breakpoint locations.

 And the values of blinkTimeActual at that spot is 3000.

 Hit the continue button.

Fig. 3.17. Continue execution after breakpoint.

Fig. 3.18. Breakpoint at line 81 is hit twice, the one in 86 is not and it should.

 A break again at 81 and not at 86, so we are not entering the loop in spite of a correct value for

blinkTimeActual at this location.

 Bug found, seems < needs to be >.

 if (digInput5 || digInput6 || digInput7)
 {
81: WawiSrv.wawiBreak(1, "breakpoint after write to activeMsCounter hit");
 }

 while (blinkTimeActual > 0) // bug 4: should be blinkTimeActual > 0
 {
86: WawiSrv.wawiBreak(2, "In while loop");

Fig. 3.19. Source code with 2 breakpoint locations.

www.sylvestersolutions.com debug with WawiLib

WawiLib 2.0.1 -14- 28/07/2021

 Correct the bug.

 Press “offline”

 Compile e Download the corrected code.

 Press “Setup()”

 Add the variable led to the grid with variables.

 Connect Digital input 5 to GND.

 Connect Digital input 6 to GND.

 Connect Digital input 7 to GND.

 Now blinkTimeActual is counting down and the LED is blinking.

 Enable Display .print() messages in the output window. (right mouse click)

Fig 3.20. Enable .print() messages in the output window.

 The output window shows the output of the .print() statements

 LED blinks on and off

 The variable led alternates between 1 and 0.

 The status of MyArduino (status bar) is now ITF_LOOP: code in Loop() is executing.

Fig 3.21. Program with code running as it should and debug output in the bottom window.

 Enable the breakpoints (press “brkpt”).

 Press “continue” when a breakpoint is hit.

www.sylvestersolutions.com debug with WawiLib

WawiLib 2.0.1 -15- 28/07/2021

 Press “continue” again when a breakpoint is hit.

 In Fig. 3.22. You can see that both breakpoints are used. Bug is indeed corrected.

Fig 3.22. Both breakpoints are used after correcting the code.

4. Further Thoughts
This this demonstration of the capabilities of WawiLib shows that it really contains added value when

debugging code. The novice and experienced user can use it to improve and correct code. I used it for

multiple programs even in a professional environment.

What is also very hand is that WawiLib can be used by the customers to get real time insight in the

operation of the code. For example tuning a PID loop of a process that cannot be interrupted (you

cannot use the console window to input a new parameter because the process needs to remain

controlled) this approach is really adding value to the Arduino experience.

5. Further Reading
This demo demonstrates how to debug an Arduino sketch with WawiLib. The way to go is to visualize

all variables of interest on the screen and observe what your application is doing. Debugging goes

much faster and is easier because you see real time values of your variables. You can also change

values to check if your analysis is correct without recompiling and downloading your program.

Another idea to debug is to record all variables with the WawiLib data recorder and then analyze

what happened with Excel or another program of your choice.

I hope you enjoyed this demo. Visit us on www.sylvestersolutions.com for the other demos.

