
www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 1 3/8/2021

Application note: baby oak tree watering

project.
Contents

1 Introduction ..2

1.1 Objective of this document ..2

1.2 Greenhouse watering application functional description ...2

1.3 Software and hardware requirements ...3

1.4 Required user experience ..4

2 “WawiWaterSensorValve” live demo ..5

2.1 Hardware connections ...5

2.2 Load the demo ..5

2.3 Visualize the variables of interest ..6

2.4 Reading and scaling the sensor input ...6

2.5 Activate moisture control (turn on watering) ...8

2.6 Simulate drought ...9

2.7 Alarm generation ... 11

2.8 WawiLib as HMI ... 11

3 “WawiWaterSensorValve” data recording demo ... 12

3.1 Continuous recording of the moisture level ... 12

3.2 Change based recording of the state machine status. .. 16

4 “WawiWaterSensorValve” Arduino software automation concepts ... 20

4.1 Never put the main loop on hold or in delay .. 20

4.2 WawiTimer object ... 21

4.2.1 The concept “millis() without delay in a C++ object”... 21

4.2.2 Short look under the hood. .. 21

4.3 The finite state machine concept ... 23

4.3.1 Introduction ... 23

4.3.2 Finite state machine concept ... 23

4.3.3 Finite state machine implementation ... 24

4.3.4 Output control using finite state machines. .. 26

4.3.5 Other parts .. 26

5 FURTHER READING .. 26

6 APPENDIX: CODE LISTING .. 27

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 2 3/8/2021

1 Introduction

1.1 Objective of this document

The objective of this document is to describe how to use WawiLib in a real automation example. The

example is a program to control water distribution to a small oak tree based on the moisture level of

the soil.

Each year, new oaks grow in my garden as the level of the soil has been raised with ground from a

foreign location by the previous owner. The objective of this project is to make sure at least of one of

them survives (normally they dry out during summer).

The application is built as a real industrial automation application. It contains reading and scaling of

an analog input value, a finite state machine (aka “Grafcet”) with automation logic and alarming. All

parameters and controls can be modified using WawiLib.

The WawiLib “Getting started” demos use simple C language commands. This application takes us to

another level: a framework for full-featured industrial automation applications. It shows how to

implement multiple timers without blocking the main Arduino loop (not using delay()) and a safe and

reliable way to implement sequential logic (finite state machine).

The use of breakpoints in the sketch to debug the application will be documented in this project

note.

WawiLib will be used as a tool to test the application and as a tool to observe and operate the

Arduino application. The demo uses USB for convenience but WiFi and Ethernet are also possible.

1.2 Greenhouse watering application functional description

The application uses a soil moisture sensor to read the moisture level of the soil. The moisture level is

scaled into a range 0...100% into the variable moistPctIst. The scaling range can be modified using

WawiLib to change moistAnaMax and moistAnaMin. moistAna contains the raw input value read

directly from the analog input of the Arduino.

Fig 1.1. Baby oak tree in garden with moisture sensor.

Watering can be enabled or disabled setting the variable wateringEnable to 1. If watering is enabled,

moistPctSoll is used as setpoint for the moisture level. If the soil gets too dry, a cycle will start where

the water valve will be opened and closed repeatedly.

Watering has to be done carefully. Therefore, even if the soil is too dry, the water will only be

opened for a limited period of time. After that the water valve will be closed to give the water time

to settle. If the moisture level is still not OK, the cycle will restart. The watering cycle can be

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 3 3/8/2021

controlled using the variables valveTimeOpenMSec and valveTimeHoldMSec. The both of them

contain time values in milliseconds.

If watering is enabled and the level of moisture does not reach the requested level after a certain

period of time, an alarm output will signal the abnormal situation. The alarm state can be checked

using the variable dryAlarm. The maximum time soil moisture can go below its setpoint before

generating an alarm is determined by moistureTimeAlarmSec.

TotalValveTime contains the total time the water valve was open.

The control logic is implemented using a finite state machine. The state of the machine can be

checked reading the value of stateString. The application contains various software timers. WawiLib

can be used to read the actual values of these timers using the variables timerFsm and

dryAlarmTimer. A detailed description of how the logic is implemented can be found later in this

document.

State changes of the FSM are reported in the output window so the user/developer can follow what

is going on in a chronological order.

1.3 Software and hardware requirements

The Arduino IDE (in this example 1.8.15) and WawiLib both need to be installed on your PC. The

demo runs with the licensed versions of WawiLib. With the unlicensed version you can use the demo

concepts with 1 variable at a time.

Essential hardware you need is an Arduino (Mega) board, a USB programming cable, some Dupont

male-male (breadboard) wires, a glass of water and a Windows PC (32 or 64 bit).

You also need a sensor that generates an analog signal 0-5V to determine the moisture level of the

soil. In this example I use a sensor as in the fig. 1.2. It is an LM393 based converter. This type of

sensor and conversion devices are available at many suppliers on the Internet. These signal amplifiers

use an operational amplifier to create a voltage signal based on the resistance of the soil.

Fig. 1.2. Various types of moisture sensors.

(If the hardware is not available you can use a potentiometer instead to simulate the output voltage

of the sensor.)

The program uses I/O13 to control the valve (or a pump) and I/O12 to issue an alarm signal if

moisture control is failing (soil is too dry for too long.)

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 4 3/8/2021

The last thing you need is a glass of water to dip the sensor in to check if your application is working

properly.

In this demo we will use the Arduino MEGA2560 board but other boards can be used in a similar or

even identical way. (Be careful: some Arduino’s are 3.3V and others are 5V based)

1.4 Required user experience

You should be familiar with the tutorials “Getting started with WawiLib USB” and “Debugging with

WawiLib USB”. There are no specific additional requirements. The C code used in this example

requires knowledge of the C language that is a bit more extended compared to the “Getting stared”

examples.

The reason is that the concepts presented in this application can be used as a framework for other

automation applications. I will first give a demo of the application as a whole and in the following

chapters I will describe in detail the different parts of the application.

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 5 3/8/2021

2 “WawiWaterSensorValve” live demo

2.1 Hardware connections

 Connect the GND pin of the interface converter to the GND of the Arduino (Pins next to pin 53).

 Connect the VCC pin of the interface converter to the +5V of the Arduino (Pins next to pin 22).

 Connect the moisture sensor to the 2 sensing pins on the interface converter (one of them has an

“earth” symbol next to them).

 Connect the AO output signal of the interface converter to A8 of the Arduino (analog input 8).

 Connect the Arduino Mega to the PC using the USB cable.

Fig. 2.1. Arduino Mega + sensor connections.

2.2 Load the demo

 Download the WawiWaterSensorValve.ino application from www.SylvesterSolutions.com. You

can find the application in the download section of www.sylvestersolutions.com.

 Compile the demo and upload it to the Arduino board.

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 6 3/8/2021

2.3 Visualize the variables of interest

 Start WawiLib and monitor the variables as indicated in the table below.

Fig. 2.2. Sketch variabeles of interest.

2.4 Reading and scaling the sensor input

 Put the sensor in a glass of water

Fig. 2.3. moistAna changes when sensor is in glass of water.

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 7 3/8/2021

 You should see the value of moistAna go down (= analog input 0..1023). Low resistance (= water

between the electrodes) makes the value go down until 259 in my case (fig 2.3). The output value

of the signal converter is about 1.05V (Fluke multimeter measurement). As you go deeper with

the sensor in the water, the value decreases.

 The scaled value moistPctIst (moisture percentage calculated) will vary as the value of moistAna

changes. But moistPctIst goes up as moistAna goes down. So moistPctIst increases as the soil

becomes wetter. The idea is that moistPctIst is 100% for completely wet soil.

 Take the sensor out of the water (keep it in the air).

Fig. 2.4. moistAna when isolated (not in the water).

 You should see the value of moistAna rise (= analog input 0..1023). High resistance (= no water)

makes the value go up until 1023, the maximum value of the A/D on the Arduino board. In my

case the output value of the signal converter is 4.96V (measured with my Fluke 117.)

 Look at the value of moistPctIst = the actual moisture value, it goes down to practically 0%.

 Put the sensor back in the glass of water.

 Vary the moistAnaMin and moistAnaMax scaling factors. (Use WawiLib to change the value to

these parameters.)

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 8 3/8/2021

Fig. 2.5. moistAna when the sensor is in the water.

 If you change the scaling factors moistAnaMin and moistAnaMax, you will see the calculated

percentage of moisture change in line with the new scaling factors.

2.5 Activate moisture control (turn on watering)

 Look at the values of wateringEnable and stateString.

 Watering is disabled and the FSM (finite state machine) is in the state

“STATE_0_VALVE_WATER_OFF”.

Fig. 2.6. Watering wateringEnable turned off.

 Put the sensor in the water

 Make sure moistPctIst is above moistPctSoll (simulate soil wetter than necessary)

 Enable “display .print() messages” in the WawiLib output window.

 Write the value 1 to the variable wateringEnable via WawiLib.

Fig. 2.7. Watering enabled turned on, soil wet enough.

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 9 3/8/2021

 As watering is enabled now, the FSM changes to the state “STATE_1_VALVE_CLOSED”.

 Monitor the variables as indicated in the table below.

Fig. 2.8. Watering enabled turned on, soil wet enough.

 The state machine is in the state “STATE_1_VALVE_CLOSED” [line 8].

 The valve is closed [line 13].

 totalValveTimerMSec , the total watering time since the boot of the Mega, is 0 [line 12].

 the value of valveTimeOpenMSec (the setpoint of the time the valve is open) is 10 seconds [11].

 the value of valveTimeHoldMSec (the setpoint of the time the valve is closed to let the water

settle) is 60 seconds [11].

2.6 Simulate drought

 Remove the sensor from the water.

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 10 3/8/2021

 The state machine is in the state “STATE_2_VALVE_OPEN” [line 8].

 The valve is open [line 13].

 totalValveTimerMSec , the total watering time since the boot of the Mega, is 5948 msec [line 12].

 the value of valveTimeOpenMSec (the setpoint of the time the valve is open) is 10 seconds [11].

 the value of valveTimeHoldMSec (the setpoint of the time the valve is closed to let the water

settle) is 60 seconds [11].

 Put the sensor back in the water.

Fig. 2.10. xxx.

 The cycle continues until timerFsm is 0 and then the FSM changes to

“STAE_3_VALVE_CLOSED_HOLD”

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 11 3/8/2021

 The variable “valveOpen” changes to 0 and stays there.

2.7 Alarm generation

 Remove the sensor from the water.

 Look at the variables as indicated in the table below.

Fig. 2.11. Dry soil alarming.

 The timer dryAlarmTimer decreases.

 As it reaches 0, the status of dryAlarm goes high.

2.8 WawiLib as HMI

If you want to control the application remotely, you can use WawiLib to control the variable

wateringEnable to turn watering on and off. The variable moistPctSoll can be used to control the

setpoint and moistPctIst to observe the actual value. totalValveTimer contains the total time the

water was running.

Observing and controlling the values of the variables explained in the previous paragraph gives you

full control over your application. In the future, SylvesterSolutions will release a DLL that enables you

to manipulate these variables using an application on the PC you have written yourself.

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 12 3/8/2021

3 “WawiWaterSensorValve” data recording demo

3.1 Continuous recording of the moisture level

 Add a data recorder REC1 to moistPctIst and moistPctSoll (time-based 3 seconds for demo

purposes):

Fig. 3.1. Define a new data recorder.

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 13 3/8/2021

Fig. 3.2. New variable data recorder 3 sec timebase.

 Disable protocol tracing in the output window (click right on the output window).

 Disable .print() tracing in the output window.

 Enable recorder tracing in the output window.

 Slowly pull the sensor out of the water and put it back in.

 Repeat this action multiple times.

 Select the variables moistPctIst and moistPctSoll for recording (add text REC1 to the recorder

column).

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 14 3/8/2021

Fig. 3.3. Select data recorder rect 1 for moistPctIst and moistPctSoll.

Fig. 3.4. Varying values of moistPctIst and static values of moistPctSoll.

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 15 3/8/2021

 Open the recorded .xlsx file in Microsoft Excel or LibreOffice calc:

Fig. 3.6. Recored data file opened in Microsoft Excel.

 You can see the recorded values of the moisture setpoint and actual value.

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 16 3/8/2021

3.2 Change based recording of the state machine status.

 Add a data recorder to record the values of stateString and valveOpen (change based):

Fig. 3.7. Add a new data recorder REC2, disable time based recording.

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 17 3/8/2021

Fig. 3.8. Add a new data recorder REC2, disable time based recording.

 Add REC2 as recorder for moistAna, stateString, and sateCurrent.

 Change the properties of stateString as indicated below:

Fig. 3.9. Change the properties of stateString so its changes trigger REC2.

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 18 3/8/2021

 Enable “Display data recording” in the output window.

 Delete REC1.

 Go online, keep the sensor out of the water.

 You can see the various state changes of the FSM recorded as they change. If the state does not

change, there will be no record added to the recording file.

 Fig. 3.10. A change of the FSM state triggers the write of a new set of data to the disk.

 Once the PC reads a state change of the FSM, the data recorder writes the change to disk.

 You see that data is only recorded if the state of the FSM changes, otherwise noting is recorded.

 You see that other parameters referenced by REC2 are written on disk when the state string

changes.

 In the same way as described before you can open the recorded datafile in LibreOffice Calc or

Excel:

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 19 3/8/2021

Fig. 3.11. recorded data file opened in Microsoft Excel.

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 20 3/8/2021

4 “WawiWaterSensorValve” Arduino software automation concepts
The objective of this part of the document is to document the main concepts used in the demo

program. They come from the world of industrial automation.

4.1 Never put the main loop on hold or in delay

Essential in industrial automation applications is the main loop. This loop is run through many times

per second. In this loop the logic is programmed to read the inputs, to calculate the result and to

write the output signals.

For some applications, you would want to set an output signal OUT_A when an input signal IN_A

comes high but after a time delay. In the same time, you would want to invert an input IN_B to an

output OUT_B. The temptation is to use the delay instruction like this:

#define IO_IN_A 1
#define IO_OUT_A 2

#define IO_IN_B 11
#define IO_OUT_B 12

void setup() {
 pinMode(IO_IN_A, INPUT);
 pinMode(IO_OUT_A, OUTPUT);

 pinMode(IO_IN_B, INPUT);
 pinMode(IO_OUT_B, OUTPUT);
}

void loop()
{

 if (digitalRead(IO_IN_A))
 {
 delay(1000);

 digitalWrite(IO_OUT_A, HIGH);
 }
 else

 digitalWrite(IO_OUT_A, LOW);

 digitalWrite(IO_OUT_B, !digitalRead(IO_IN_B));

}

Fig. 4.1. using delay in a real time program is not a good idea.

The problem is that the code that inverts input B is put on hold by the delay(1000) statement.

What we need is some kind of timer logic that we can set and check and that runs in parallel or

independently. One of the ways to create timer logic is to use a hardware timer based interrupt to

decrement a variable that is holding a time value in an interrupt handler.

The hardware timer approach has its disadvantages: First of all, it will eat up (much) CPU time

executing the interrupt handler. You also do not know at what line of the main loop the interrupt

handler will kick in. Therefor you cannot assume that through the main loop, the timer will have the

same value.

Last but not least the variable holding the time value needs to be declared “volatile”. This prevents

compiler optimizations that make code fail when variables are shared between interrupt handlers

and main code. The volatile keyword tells the compiler to always use the same memory location for

the variable instead of using registers at some places and memory at other places for efficiency

reasons.

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 21 3/8/2021

4.2 WawiTimer object

4.2.1 The concept “millis() without delay in a C++ object”

Arduino’s have a function called millis(). Millis() returns the number of milliseconds since the Arduino

board was booted. If we keep track of the value of millis(), it is possible to create a kind of timer

“object” without blocking the main loop.

Suppose, we iterate through the main loop and each time we iterate, we store the value of millis().

By calculating the difference between the current and the previous value of millis(), we know the

amount of time that has elapsed since the last pass.

Now, if we keep track of all the time intervals elapsed we know the total time elapsed between an

event and the current moment in time. Doing so opens the way for a timer object.

So, first you set the object to a value (10.000 msec), each scan the value of 10 sec is decremented by

the time elapsed since the previous scan. We do this until the value of the time counter reaches 0.

Each time we look also at the value of the internal time counter, as long as it is bigger than 0, we do

nothing and once is it zero, we start some kind of job or a task. This way we can create a timer

functionality without holding the loop. Therefor other jobs that are also managed by the program do

not need to be put on hold or frozen.

If you put this functionality in an encapsulated object, you get the object called “WawiTimer”. The

object has its own files WawiTimer.cpp and WawiTimer.h.

4.2.2 Short look under the hood.

The first thing you do is

WawiTimer timerFsm;

Fig. 4.3. WawiTimer class members (WawiTimer.h).

Once you do this a number of member variables are created as declared in the declaration of the C++

object class in the header.

class WawiTimer
{
private:

 unsigned long m_tPrev;
 bool m_activePrev;
public:

 WawiTimer(bool incremental = false);
 unsigned long long m_t;
 bool m_incremental;

public:
 bool isZero() const { return (m_t == 0); };
 void setMs(unsigned long long valueMs) { m_t = valueMs; m_tPrev = millis(); };

 void setMsAct(unsigned long valueMs) { m_tPrev = valueMs; };
 unsigned long long getValue() const { return m_t; };
 void loop(bool active = true);

 operator bool() const { return (m_t == 0); };

};

Once you call timerFsm.loop() (that is a public member function) the whole principle as declared in

the $4.2.1. is executed.

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 22 3/8/2021

void WawiTimer::loop(bool active)
{
 unsigned long m, delta;

 if (!m_activePrev && active)
 {
 m_tPrev = millis();

 m_activePrev = active;
 return;
 }

 // calculate delta time between last loop and this loop;
 if (m_activePrev)
 {

 m = millis();
 delta = m - m_tPrev;
 m_tPrev = m;

 }
 // incrementing timer counter:
 if (m_incremental && m_activePrev)

 {
 if (m_t <= 0xFFFFFFFFFFFFFFFF - delta)
 m_t = m_t + delta;

 else
 m_t = 0xFFFFFFFFFFFFFFFF;
 }

 // decrementing timer counter:
 if (!m_incremental && m_activePrev)

 {
 if (m_t >= delta)
 m_t = m_t - delta;

 else
 m_t = 0;
 }

 m_activePrev = active;

}

Fig. 4.4. WawiTimer internal loop function.

So when the Arduino executes:

timerFsm.isZero(), it executes the code marked in yellow below.

class WawiTimer
{

private:
 unsigned long m_tPrev;
 bool m_activePrev;

public:
 WawiTimer(bool incremental = false);
 unsigned long long m_t;

 bool m_incremental;
public:
 bool isZero() const { return (m_t == 0); };

 void setMs(unsigned long long valueMs) { m_t = valueMs; m_tPrev = millis(); };
 void setMsAct(unsigned long valueMs) { m_tPrev = valueMs; };
 unsigned long long getValue() const { return m_t; };

 void loop(bool active = true);
 operator bool() const { return (m_t == 0); };

};

Fig. 4.5. WawiTimer class members (WawiTimer.h).

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 23 3/8/2021

The nice thing about this is that the whole millis() thing is encasulated, (hidden) by the object so it

does not trouble the structure the code as many implementations that use millis() directly do.

4.3 The finite state machine concept

4.3.1 Introduction

I have been writing software for more than 30 years now and I have been the witness of epic

discussions of good and bad software. I have seen bad software work and good software fail.

Some time ago I read a small book from Mark Buelens, a professor at the Vlerick Management school

about decision making. The most important lesson he learned was: do focus on the quality of the

decision process. The result of a decision can turn out good or bad because a lot of factors are

involved, but whatever you do: focus on the quality of the process. My experience with software is

similar, if you use methods that reduce the risk of failure you will get better results.

If you want to write a program that does some kind of sequencing, you can use a lot of Boolean logic

to implement the program. But if you are not careful, you risk to create situations where your logic is

blocked and hangs. Last minute modifications or small modifications create high risk.

4.3.2 Finite state machine concept

A finite state machine is a concept where the machine can only have a limited number of states. It

can only change from one defined state to another defined state using transitions. These transitions

are well defined and only influence the transition from step A to B and nothing else.

Fig. 4.6. finite state machine of watering application.

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 24 3/8/2021

This means if you want to implement additional transitions, you only modify a small part of the code

that is isolated from other transitions. This makes the risk of destroying the code logic much smaller

than in code that has been built without this type of logic.

In the figure 4.6. you see a visual representation of the finite state machine for the

WawiWaterSensorValve program. If the program is not active, the FSM is in the state

STATE_0_VALVE_WATER_OFF.

In the state STATE_0_VALVE_WATER_OFF, the condition wateringEnable == true triggers the

transition from STATE_0_VALVE_WATER_OFF to STATE_1_VALVE_CLOSED.

In the state STATE_1_VALVE_VALVE_CLOSED, the condition moistPctSoll > moistPctIst (actual value

of moisture measured is below the setpoint) triggers the transition from

STATE_1_VALVE_WATER_OFF to STATE_2_VALVE_OPEN.

In the state STATE_2_VALVE_VALVE_OPEN, the condition timerFsm.isZero() (count down timer has

elapsed) triggers the transition to STATE_3_VALVE_CLOSED_HOLD.

Other transitions in the diagram work in the same way.

4.3.3 Finite state machine implementation

In C++ programming, an enumeration type (or an enumerator class) is a data type that ideal to

represent the states of an FSM. This approach is type safe compared to an approach with an integer

number that could obtain an illegal value because of a programming error.

// finite state machine variables to control the valve:
// (a finite state machine is a construct that can only have a limited number of

states)
enum class FsmState { STATE_0_VALVE_WATER_OFF = 0, STATE_1_VALVE_CLOSED = 1,
STATE_2_VALVE_OPEN = 2, STATE_3_VALVE_CLOSED_HOLD = 3 };

FsmState stateCurrent, statePrev{ FsmState::STATE_0_VALVE_WATER_OFF };
const char* stateStrings[] = { "STATE_0_VALVE_WATER_OFF", "STATE_1_VALVE_CLOSED",

"STATE_2_VALVE_OPEN", "STATE_3_VALVE_CLOSED_HOLD" };
char stateString[30];

bool firstScanNewState;

Fig. 4.7. define a enumerator to represent the states of the finite state machine.

If we want to display the actual value in WawiLib, we can use the variable stateCurrent and visualize

it as an integer number. This is a poor solution as the numbers of the states do not give that much

information.

Much better is to show the states of the FSM as text. To do the conversion to a string, I created an

array of char* strings stateStrings[] and a variable stateString that will contain the actual value of the

state machine in plain text.

Strcpy copies one of the strings in stateStrings[] into stateString. The appropriate array index is

obtained by using the stateCurrent as an integer. (int) is used to cast the Enumto an array index. (fig

4.8.)

 // report: translate stateCurrent into a string and put it in stateString:
 strcpy(stateString, stateStrings[(int)stateCurrent]);

Fig. 4.8. Convert enum into string containing the actual step.

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 25 3/8/2021

The code in fig. 4.9. shows the implementation of the FSM itself. The case state using the enum

stateCurrent makes sure that the code remains transparent. The use of the timer concept explained

in the previous chapter is used to implement timer functions.

//---
// helper to transfer FSM to other state:

void fsmGoTo(FsmState newState)
{
 stateCurrent = newState;

 WawiSrv.println((String)"New step = " + stateStrings[(int)stateCurrent]);
}
//--

// finite state machine:
void loopFsmStateLogic()
{

 do
 {
 // Move from one step to another if conditions are right:

 switch (stateCurrent)
 {
 case FsmState::STATE_0_VALVE_WATER_OFF:

 if (wateringEnable)
 fsmGoTo(FsmState::STATE_1_VALVE_CLOSED);

 break;
 case FsmState::STATE_1_VALVE_CLOSED:
 if (moistPctSoll > moistPctIst)

 {
 WawiSrv.wawiBreak(1, "Break when soil is to dry!");
 fsmGoTo(FsmState::STATE_2_VALVE_OPEN);

 }
 if (!wateringEnable)
 fsmGoTo(FsmState::STATE_0_VALVE_WATER_OFF);

 break;
 case FsmState::STATE_2_VALVE_OPEN:
 if (firstScanNewState)

 {
 WawiSrv.wawiBreak(2, "Break entering step 3.");
 timerFsm.setMs(valveTimeOpenMSec);

 }
 if (timerFsm.isZero())
 fsmGoTo(FsmState::STATE_3_VALVE_CLOSED_HOLD);

 if (!wateringEnable)
 fsmGoTo(FsmState::STATE_0_VALVE_WATER_OFF);

 break;
 case FsmState::STATE_3_VALVE_CLOSED_HOLD:
 if (firstScanNewState)

 {
 WawiSrv.wawiBreak(3, "Break entering step 4.");
 timerFsm.setMs(valveTimeHoldMSec);

 }
 if (timerFsm.isZero())
 fsmGoTo(FsmState::STATE_0_VALVE_WATER_OFF);

 break;
 }
 firstScanNewState = (stateCurrent != statePrev);

 // report: translate stateCurrent into a string and put it in stateString:
 strcpy(stateString, stateStrings[(int)stateCurrent]);
 // display state change of the FSM in the output window:

 if (firstScanNewState)
 {
 statePrev = stateCurrent;

 WawiSrv.print("State change to: ");

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 26 3/8/2021

 WawiSrv.println(stateString);

 }
 } while (firstScanNewState);

}

Fig. 4.9. the actual finite state machine implementation using a switch and case statements.

Each time the FSM goes from one state to another, the variable firstScanNewState is set. Upon entry

of the Case section related to the new state, firstScanNewState is used to initialize timerFsm with the

target value.

Then, the program keeps circulating through the case statement related to the current step loop

after loop. This until (for example) timerFsm.isZero() returns true.

If a transfer condition becomes true, the FSM changes state to a new active state using the function

fsmGoTo().

4.3.4 Output control using finite state machines.

The last step is to set or clear the Arduino outputs based on the state of the FSM.

//--
// finite state machine:

void loopFsmStateToOutputs()
{
 // Move from one step to another if conditions are right:

 switch (stateCurrent)
 {
 case FsmState::STATE_0_VALVE_WATER_OFF:

 case FsmState::STATE_1_VALVE_CLOSED:
 case FsmState::STATE_3_VALVE_CLOSED_HOLD:

 valveOpen = LOW;
 break;
 case FsmState::STATE_2_VALVE_OPEN:

 valveOpen = HIGH;
 break;
 }

}

Fig. 4.10. FSM deterimnes the status of the IO’s.

In the same way as for the transitions, you can use a switch() statement to control the states of the

FMS output. Putting the control of the outputs in a separate function keeps the code clean and easy

to manage.

4.3.5 Other parts

The completing part of the application is some code to implement an alarm that will be triggered if

the moisture level is too low for a period of time. If you have been able to follow until now, the code

for the alarming will have no surprises. The code that drives WawiLib has been explained in the

WawiLib “Getting Started” demos.

5 FURTHER READING
This demo demonstrates how to implement automation logic using a finite state machine and to test,

debug and control the application using WawiLib. A very efficient concept of timers was introduced

that does not block the main loop. A finite state machine (FSM) was used for analysis of the

application. The FSM was translated in to Arduino C code using enums.

I hope you enjoyed this demo. Visit us on www.sylvestersolutions.com for the other demos.

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 27 3/8/2021

6 APPENDIX: CODE LISTING
/*
* Project Name: WawiWaterSensorValve
* File: WawiWaterSensorValve.ino
* Description: demo file library for WawiSerialUsb libary.

* Reads water sensor, and contols water valve based on moisture level.
* Generates an alarm if moisture is below low level for too long
* Moisture level control can be turned on and off

* All parameters can be modified and observed using WawiLib
* Use programming USB port to make connection with the Arduino board.
* This software is provided as is without warranty of any kind

* Author: John Gijs.
* Created March 2020
* Updated August 2021

* More info: www.sylvestersolutions.com
* Technical support: support@sylvestersolutions.com

* Additional info: info@sylvestersolutions.com
*/

#include <WawiSerialUsb.h>
#include "WawiTimer.h"

// comment next line out (use //) if you do not have IO present and want to use
WawiLib to simulate IO
#define ENABLE_IO 1

#define VALVE_IO 13
#define DRY_ALARM_IO 13

//--
// variables related to the actual moisture of the soil:

int moistAna = 0; // analog input
int moistAnaMin = 300; // scaling low limit
int moistAnaMax = 1024; // scaling high limit

float moistPctIst = 0.0; // actual value in %
float moistPctSoll = 50.0; // low limit to start watering in %

//--

// wateringEnable watering functionality is ON or OFF:
bool wateringEnable = false;
// actual state of watering valve itself and the alarm output:

bool valveOpen = false;
bool dryAlarm = false;

WawiTimer timerFsm;
WawiTimer dryAlarmTimer();
WawiTimer totalValveTimer(/*incrementing */ true);

//--
// alarm delay time:

unsigned long long dryTimeAlarmMSec = 1800000;

//--

// the water needs some time to settle before the moisture reaches the sensor
// so the valve needs to pulsate in order for the application to work properly:
long long valveTimeOpenMSec = 10000;

long long valveTimeHoldMSec = 60000;

//--

// finite state machine variables to control the valve:

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 28 3/8/2021

// (a finite state machine is a construct that can only have a limited number of

states)
enum class FsmState { STATE_0_VALVE_WATER_OFF = 0, STATE_1_VALVE_CLOSED = 1,
STATE_2_VALVE_OPEN = 2, STATE_3_VALVE_CLOSED_HOLD = 3 };

FsmState stateCurrent, statePrev{ FsmState::STATE_0_VALVE_WATER_OFF };
const char* stateStrings[] = { "STATE_0_VALVE_WATER_OFF", "STATE_1_VALVE_CLOSED",
"STATE_2_VALVE_OPEN", "STATE_3_VALVE_CLOSED_HOLD" };

char stateString[30];
bool firstScanNewState;

//--
// the wawilib part:
WawiSerialUsb WawiSrv;

void wawiVarDef()
{

 WawiSrv.wawiVar(moistAna);
 WawiSrv.wawiVar(moistAnaMin);
 WawiSrv.wawiVar(moistAnaMax);

 WawiSrv.wawiVar(moistPctSoll);
 WawiSrv.wawiVar(moistPctIst);

 WawiSrv.wawiVar(wateringEnable);
 WawiSrv.wawiVar(dryTimeAlarmMSec);
 WawiSrv.wawiVar(valveTimeOpenMSec);

 WawiSrv.wawiVar(valveTimeHoldMSec);

 WawiSrv.wawiVar(valveOpen);

 WawiSrv.wawiVar(dryAlarm);

 WawiSrv.wawiVar(stateCurrent);

 WawiSrv.wawiVarTimer(timerFsm);
 WawiSrv.wawiVarTimer(dryAlarmTimer);

 WawiSrv.wawiVarTimer(totalValveTimer);

 WawiSrv.wawiVarArray(stateString);

}

//--

void setupIO()
{

 pinMode(VALVE_IO, OUTPUT);
 pinMode(DRY_ALARM_IO, OUTPUT);

}
//--

void setupWawiLib()
{
 WawiSrv.begin(wawiVarDef, Serial, "MyArduino");

 WawiSrv.wawiBreakDisable();
}
//--

void setup()
{

 Serial.begin(115200);
 setupWawiLib();
 setupIO();

}

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 29 3/8/2021

//==

======
// scaling and limiting functions for analog I/O processing:
int limit(int v, int min, int max)

{
 if (v < min) return min;
 if (v > max) return max;

 return v;
}

float scale(int v, int vMin, int vMax, float lo, float hi)
{
 return lo + (float)(v - vMin) / (vMax - vMin) * (hi - lo);

}

//--

void loopReadInputs()
{
#ifdef ENABLE_IO

 // read and process moisture level:
 moistAna = limit(analogRead(8), 0, 1024);

 moistPctIst = scale(moistAna, moistAnaMin, moistAnaMax, 100.0, 0.0);
#endif
}

//--

// helper to transfer FSM to other state:
void fsmGoTo(FsmState newState)
{

 stateCurrent = newState;
 WawiSrv.println((String)"New step = " + stateStrings[(int)stateCurrent]);
}

//--
// finite state machine:

void loopFsmStateLogic()
{
 do

 {
 // Move from one step to another if conditions are right:
 switch (stateCurrent)

 {
 case FsmState::STATE_0_VALVE_WATER_OFF:

 if (wateringEnable)
 fsmGoTo(FsmState::STATE_1_VALVE_CLOSED);
 break;

 case FsmState::STATE_1_VALVE_CLOSED:
 if (moistPctSoll > moistPctIst)
 {

 WawiSrv.wawiBreak(1, "Break when soil is to dry!");
 fsmGoTo(FsmState::STATE_2_VALVE_OPEN);
 }

 if (!wateringEnable)
 fsmGoTo(FsmState::STATE_0_VALVE_WATER_OFF);
 break;

 case FsmState::STATE_2_VALVE_OPEN:
 if (firstScanNewState)
 {

 WawiSrv.wawiBreak(2, "Break entering step 3.");
 timerFsm.setMs(valveTimeOpenMSec);
 }

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 30 3/8/2021

 if (timerFsm.isZero())

 fsmGoTo(FsmState::STATE_3_VALVE_CLOSED_HOLD);
 if (!wateringEnable)
 fsmGoTo(FsmState::STATE_0_VALVE_WATER_OFF);

 break;
 case FsmState::STATE_3_VALVE_CLOSED_HOLD:
 if (firstScanNewState)

 {
 WawiSrv.wawiBreak(3, "Break entering step 4.");
 timerFsm.setMs(valveTimeHoldMSec);

 }
 if (timerFsm.isZero())
 fsmGoTo(FsmState::STATE_0_VALVE_WATER_OFF);

 break;
 }
 firstScanNewState = (stateCurrent != statePrev);

 // report: translate stateCurrent into a string and put it in stateString:
 strcpy(stateString, stateStrings[(int)stateCurrent]);
 // display state change of the FSM in the output window:

 if (firstScanNewState)
 {

 statePrev = stateCurrent;
 WawiSrv.print("State change to: ");
 WawiSrv.println(stateString);

 }
 } while (firstScanNewState);
}

//--
// Make alarm if dry is too long high:

void loopAlarming()
{
 // if watering is wateringEnabled, and moisture is too low a timer is started

 bool dry = moistPctIst < moistPctSoll;
 if (wateringEnable && !dry)
 dryAlarmTimer.setMs(dryAlarmTimer);

 // alarm after moistureTimeAlarmSec seconds of drought
 if (dryAlarmTimer.isZero())

 dryAlarm = HIGH;
 else
 dryAlarm = LOW;

}

//--
// finite state machine:
void loopFsmStateToOutputs()

{
 // Move from one step to another if conditions are right:
 switch (stateCurrent)

 {
 case FsmState::STATE_0_VALVE_WATER_OFF:
 case FsmState::STATE_1_VALVE_CLOSED:

 case FsmState::STATE_3_VALVE_CLOSED_HOLD:
 valveOpen = LOW;
 break;

 case FsmState::STATE_2_VALVE_OPEN:
 valveOpen = HIGH;
 break;

 }
}

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 31 3/8/2021

//--

void loopWriteOutputs()
{
 digitalWrite(VALVE_IO, valveOpen);

 digitalWrite(DRY_ALARM_IO, dryAlarm);
}

void loop()
{
 loopReadInputs();

 loopFsmStateLogic();
 loopAlarming();
 loopFsmStateToOutputs();

 timerFsm.loop();
 totalValveTimer.loop(valveOpen);
 dryAlarmTimer.loop();

 WawiSrv.loop();

}

Fig 6.1. WawiWaterSensorValve.ino

#include <Arduino.h>

#define wawiVarTimer(X) wawiCompare(#X,(unsigned int) &X.m_t,sizeof(X.m_t),1);

class WawiTimer
{

private:
 unsigned long m_tPrev;
 bool m_activePrev;

public:
 WawiTimer(bool incremental = false);
 unsigned long long m_t;

 bool m_incremental;
public:

 bool isZero() const { return (m_t == 0); };
 void setMs(unsigned long long valueMs) { m_t = valueMs; m_tPrev = millis(); };
 void setMsAct(unsigned long valueMs) { m_tPrev = valueMs; };

 unsigned long long getValue() const { return m_t; };
 void loop(bool active = true);
 operator bool() const { return (m_t == 0); };

};

Fig 6.2. WawiTimer.h

#include "WawiTimer.h"
#include "Arduino.h"

WawiTimer::WawiTimer(bool incremental)

{
 m_incremental = incremental;
 m_t = 0;

}

void WawiTimer::loop(bool active)

{
 unsigned long m, delta;
 if (!m_activePrev && active)

 {
 m_tPrev = millis();
 m_activePrev = active;

 return;
 }
 // calculate delta time between last loop and this loop;

www.sylvestersolutions.com Greenhouse watering application

WAWILIB 2.0.1. 32 3/8/2021

 if (m_activePrev)

 {
 m = millis();
 delta = m - m_tPrev;

 m_tPrev = m;
 }
 // incrementing timer counter:

 if (m_incremental && m_activePrev)
 {
 if (m_t <= 0xFFFFFFFFFFFFFFFF - delta)

 m_t = m_t + delta;
 else
 m_t = 0xFFFFFFFFFFFFFFFF;

 }
 // decrementing timer counter:
 if (!m_incremental && m_activePrev)

 {
 if (m_t >= delta)
 m_t = m_t - delta;

 else
 m_t = 0;

 }
 m_activePrev = active;
}

Fig 6.3. WawiTimer.cpp

